997 resultados para cathepsin K
Resumo:
Background: Hemoglobin is a rich source of biologically active peptides, some of which are potent antimicrobials (hemocidins). A few hemocidins have been purified from the midgut contents of ticks. Nonetheless, how antimicrobials are generated in the tick midgut and their role in immunity is still poorly understood. Here we report, for the first time, the contribution of two midgut proteinases to the generation of hemocidins. Results: An aspartic proteinase, designated BmAP, was isolated from the midgut of Rhipicephalus (Boophilus) microplus using three chromatographic steps. Reverse transcription-quantitative polymerase chain reaction revealed that BmAP is restricted to the midgut. The other enzyme is a previously characterized midgut cathepsin L-like cysteine proteinase designated BmCL1. Substrate specificities of native BmAP and recombinant BmCL1 were mapped using a synthetic combinatorial peptide library and bovine hemoglobin. BmCL1 preferred substrates containing non-polar residues at P2 subsite and polar residues at P1, whereas BmAP hydrolysed substrates containing non-polar amino acids at P1 and P1`. Conclusions: BmAP and BmCL1 generate hemocidins from hemoglobin alpha and beta chains in vitro. We postulate that hemocidins may be important for the control of tick pathogens and midgut flora.
Resumo:
Pycnodysostosis is a rare autosomal recessive skeletal dysplasia caused by the absence of active cathepsin K, which is a lysosomal cysteine protease that plays a role in degrading the organic matrix of bones, acting in bone resorption and bone remodeling. The disease is primarily characterized by osteosclerosis, bone fragility, short stature, acro-osteolysis, and delayed closure of the cranial sutures. A differing feature, cranial synostosis, has occasionally been described in this disorder. We reviewed six unrelated patients with pycnodysostosis (mean age of 10 years and 4 months) in order to evaluate the presence of craniosynostosis. In addition to the typical findings of the condition, they all presented premature fusion of the corona! suture. Although none of them showed signs of cranial hypertension, one patient had had the craniosynostosis surgically corrected previously. These data suggest that the cranial sutures in pycnodysostosis can display contradictory features: wide cranial sutures, which are commonly described, and craniosynostosis. The clinical impact of this latter finding still remains to be elucidated. Further studies are necessary to address more precisely the role of cathepsin K in suture patency. (C) 2010 Wiley-Liss, Inc.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
During orthodontic tooth movement (OTM), alveolar bone is resorbed by osteoclasts in compression sites (CS) and is deposited by osteoblasts in tension sites (TS). The aim of this study was to develop a standardized OTM protocol in mice and to investigate the expression of bone resorption and deposition markers in CS and TS. An orthodontic appliance was placed in C57BL6/J mice. To define the ideal orthodontic force, the molars of the mice were subjected to forces of 0.1 N, 0.25 N, 0.35 N and 0.5 N. The expression of mediators that are involved in bone remodeling at CS and TS was analyzed using a Real-Time PCR. The data revealed that a force of 0.35 N promoted optimal OTM and osteoclast recruitment without root resorption. The levels of TNF-alpha, RANKL, MMP13 and OPG were all altered in CS and TS. Whereas TNF-a and Cathepsin K exhibited elevated levels in CS. RUNX2 and OCN levels were higher in TS. Our results suggest that 0.35 N is the ideal force for OTM in mice and has no side effects. Moreover, the expression of bone remodeling markers differed between the compression and the tension areas, potentially explaining the distinct cellular migration and differentiation patterns in each of these sites. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Bone remodeling is affected by mechanical loading and inflammatory mediators, including chemokines. The chemokine (C–C motif) ligand 3 (CCL3) is involved in bone remodeling by binding to C–C chemokine receptors 1 and 5 (CCR1 and CCR5) expressed on osteoclasts and osteoblasts. Our group has previously demonstrated that CCR5 down-regulates mechanical loading-induced bone resorption. Thus, the present study aimed to investigate the role of CCR1 and CCL3 in bone remodeling induced by mechanical loading during orthodontic tooth movement in mice. Our results showed that bone remodeling was significantly decreased in CCL3−/− and CCR1−/− mice and in animals treated with Met-RANTES (an antagonist of CCR5 and CCR1). mRNA levels of receptor activator of nuclear factor kappa-B (RANK), its ligand RANKL, tumor necrosis factor alpha (TNF-α) and RANKL/osteoprotegerin (OPG) ratio were diminished in the periodontium of CCL3−/− mice and in the group treated with Met-RANTES. Met-RANTES treatment also reduced the levels of cathepsin K and metalloproteinase 13 (MMP13). The expression of the osteoblast markers runt-related transcription factor 2 (RUNX2) and periostin was decreased, while osteocalcin (OCN) was augmented in CCL3−/− and Met-RANTES-treated mice. Altogether, these findings show that CCR1 is pivotal for bone remodeling induced by mechanical loading during orthodontic tooth movement and these actions depend, at least in part, on CCL3.
Resumo:
Osteoporosis is characterised by a progressive loss of bone mass and microarchitecture which leads to increased fracture risk. Some of the drugs available to date have shown reductions in vertebral and non-vertebral fracture risk. However, in the ageing population of industrialised countries, still more fractures happen today than are avoided, which highlights the large medical need for new treatment options, models, and strategies. Recent insights into bone biology, have led to a better understanding of bone cell functions and crosstalk between osteoblasts, osteoclasts, and osteocytes at the molecular level. In the future, the armamentarium against osteoporotic fractures will likely be enriched by (1.) new bone anabolic substances such as antibodies directed against the endogenous inhibitors of bone formation sclerostin and dickkopf-1, PTH and PTHrp analogues, and possibly calcilytics; (2.) new inhibitors of bone resorption such as cathepsin K inhibitors which may suppress osteoclast function without impairing osteoclast viability and thus maintain bone formation by preserving the osteoclast-osteoblast crosstalk, and denosumab, an already widely available antibody against RANKL which inhibits osteoclast formation, function, and survival; and (3.) new therapeutic strategies based on an extended understanding of the pathophysiology of osteoporosis which may include sequential therapies with two or more bone active substances aimed at optimising the management of bone capital acquired during adolescence and maintained during adulthood in terms of both quantity and quality. Finally, one of the future challenges will be to identify those patients and patient populations expected to benefit the most from a given drug therapy or regimen. The WHO fracture risk assessment tool FRAX® and improved access to bone mineral density measurements by DXA will play a key role in this regard.
Resumo:
Saliva can reach mineralized surfaces in the oral cavity; however, the relationship between saliva and bone resorption is unclear. Herein, we examined whether saliva affects the process of osteoclastogenesis in vitro. We used murine bone marrow cultures to study osteoclast formation. The addition of fresh sterile saliva eliminated the formation of multinucleated cells that stained positive for tartrate-resistant acid phosphatase (TRAP). In line with the histochemical staining, saliva substantially reduced gene expression of cathepsin K, calcitonin receptor, and TRAP. Addition of saliva led to considerably decreased gene expression of receptor activator of nuclear factor kappa-B (RANK) and, to a lesser extent, that of c-fms. The respective master regulators of osteoclastogenesis (c-fos and NFATc1) and the downstream cell fusion genes (DC-STAMP and Atp6v0d2) showed decreased expression after the addition of saliva. Among the costimulatory molecules for osteoclastogenesis, only OSCAR showed decreased expression. In contrast, CD40, CD80, and CD86-all costimulatory molecules of phagocytic cells-were increasingly expressed with saliva. The phagocytic capacity of the cells was confirmed by latex bead ingestion. Based on these in vitro results, it can be concluded that saliva suppresses osteoclastogenesis and leads to the development of a phagocytic cell phenotype.
Resumo:
β-Tricalcium phosphate (β-TCP) ceramics are approved for the repair of osseous defects. In large defects, however, the substitution of the material by authentic bone is inadequate to provide sufficient long-term mechanical stability. We aimed to develop composites of β-TCP ceramics and receptor activator of nuclear factor κ-B ligand (RANKL) to enhance the formation of osteoclasts and promote cell mediated calcium phosphate resorption. RANKL was adsorbed superficially onto β-TCP ceramics or incorporated into a crystalline layer of calcium phosphate by the use of a co-precipitation technique. Murine osteoclast precursors were seeded onto the ceramics. After 15 days, the formation of osteoclasts was quantified cytologically and colorimetrically with tartrate-resistant acidic phosphatase (TRAP) staining and TRAP activity measurements, respectively. Additionally, the expression of transcripts encoding the osteoclast gene products cathepsin K, calcitonin receptor, and of the sodium/hydrogen exchanger NHA2 were quantified by real-time PCR. The activity of newly formed osteoclasts was evaluated by means of a calcium phosphate resorption assay. Superficially adsorbed RANKL did not induce the formation of osteoclasts on β-TCP ceramics. When co-precipitated onto β-TCP ceramics RANKL supported the formation of mature osteoclasts. The development of osteoclast lineage cells was further confirmed by the increased expression of cathepsin K, calcitonin receptor, and NHA2. Incorporated RANKL stimulated the cells to resorb crystalline calcium phosphate. Our in vitro study shows that RANKL incorporated into β-TCP ceramics induces the formation of active, resorbing osteoclasts on the material surface. Once formed, osteoclasts mediate the release of RANKL thereby perpetuating their differentiation and activation. In vivo, the stimulation of osteoclast-mediated resorption may contribute to a coordinated sequence of material resorption and bone formation. Further in vivo studies are needed to confirm the current in vitro findings.
Resumo:
Osteoclast research has an exciting history and a challenging future. More than 3 decades ago, it became evident that bone-resorbing osteoclasts are of hematopoietic origin and are ultimately linked to the "basic multicellular unit," where they team up with the other cell types, including bone-forming osteoblasts. Since 2 decades, we have learned about the signaling pathways controlling genes relevant for osteoclastogenesis and bone resorption. It took another decade until the hypothesized "osteoclast differentiation" factor was discovered and was translated into an approved pharmacologic strategy. Here, the focus is on another molecular target, cathepsin K, a cysteine protease being released by the osteoclast into the resorption compartment. Genetic deletion and pharmacological blocking of cathepsin K reduces bone resorption but with ongoing bone formation. This observation not only holds great promise to become a new pharmacologic strategy, but it also provides new insights into the coordinated work of cells in the "basic multicellular unit" and thus, bridges the history and future of osteoclast research. This article is a short primer on osteoclast biology for readers of the special issue on odanacatib, a cathepsin K inhibitor.
Resumo:
To study the physiological control of osteoclasts, the bone resorbing cells, we generated transgenic mice carrying the Cre recombinase gene driven by either the tartrate-resistant acid phosphatase (TRAP) or cathepsin K (Ctsk) promoters. TRAP-Cre and Ctsk-Cre transgenic mouse lines were characterized by breeding with LacZ ROSA 26 (R26R) reporter mice and immunohistochemistry for Cre recombinase. The Cre transgene was functional in all lines, with Cre-mediated recombination occurring primarily in the long bones, vertebrae, ribs, and calvaria. Histological analyses of the bones demonstrated that functional Cre protein was present in 1) osteoclasts (Ctsk-Cre); 2) osteoclasts, columnar proliferating, and hypertrophic chondrocytes (TRAP-Cre line 4); and 3) round proliferating chondrocytes (TRAP-Cre line 3). In conclusion, we generated transgenic mouse lines that will enable the deletion of floxed target genes in osteoclasts, which will be valuable tools for studying the regulation of osteoclast function. (C) 2004 Wiley-Liss, Inc.
Resumo:
Periodontal diseases, highly prevalent disease in worldwide population, manifest primarily in two distinct entities: plaque-induced gingivitis and periodontitis. Periodontitis is a chronic inflammatory disease characterized of different levels of collagen, cementum, and alveolar bone destruction. Recent experimental studies demonstrated anti-inflammatory and antirreabsortive effect of antihypertensive agents of the angiotensin II receptor blockers class on periodontal disease. The aim of this study was to evaluate the effects of azilsartan (AZT), a potent inhibitor of the angiotensin II receptor which has minimal adverse effects on bone loss, inflammation, and the expression of matrix metallo proteinases (MMPs), receptor activator of nuclear factor kB ligand (RANKL), receptor activator of nuclear factor kB (RANK), osteoprotegerin (OPG), cyclooxygenase-2 (COX-2), and cathepsin K in periodontal tissue in a rat model of ligature-induced periodontitis. Male Wistar albino rats were randomly divided into 5 groups of 20 rats each: (1) nonligated, water; (2) ligated, water; (3) ligated, 1 mg/kg AZT; (4) ligated, 5 mg/kg AZT; and (5) ligated, 10 mg/kg AZT. All groups were treated with water or AZT for 10 days. Periodontal tissues were analyzed by morphometric exam, histopathology and immunohistochemical detection of MMP-2, MMP-9, COX-2, RANKL, RANK, OPG, and cathepsin K. Levels of IL-1b, IL-10, TNF-a, myeloperoxidase (MPO), and glutathione (GSH) were determined by ELISA. Treatment with 5 mg/kg AZT resulted in reduced MPO (p˂0.05) and IL-1b (p˂0.05) levels and increased in Il-10 levels (p˂0.05). It was observed a reduced expression of MMP-2, MMP-9, COX-2, RANK, RANKL, cathepsin K, and a increased expression of OPG in the animals subjected to experimental periodontitis and threated with AZT (5 mg/kg). Conclusions: These findings suggest an anti-inflammatory and anti-reabsortive effects of AZT on ligature-induced periodontitis in rats.
Resumo:
The reaction of the five-membered C,N-palladacycle [(L)PdCl](2), where LH = 1-methyl-5-phenyl-1H-1,4-benzodiazepin-2(3H)-one, with 1,2-ethanebis(diphenylphosphine), dppe, leads to the formation of the bridged palladacycle. [Pd(2)L(2)(mu-dppe)Cl(2)] 3, which was characterised in solution by (1)H and (31)P NMR spectroscopy and in the solid state by X-ray crystallography. Complex 3 was tested in vitro against a number of cell lines. For example, it inhibited K562 leukaemia cells with an IC(50) value of 4.3 microM (1 h exposure) and displayed cathepsin B inhibitory action with an IC(50) value of 3 microM.
Resumo:
The reaction of the five- or six-membered C,N or C,S-palladacycles [(L)PdCl](2) with PTA (1,3,5-triaza-7-phosphaadamantane) led to the monomeric complexes [(L)Pd(PTA)Cl] 6a, 6b and 7 where LH= N,N-dimethyl-1-phenylmethanamine, benzyl(methyl)sulfane or 1-methyl-5-phenyl-1H-benzo[e][1,4]diazepin-2(3H)-one respectively. Dimeric complexes have also been synthesised: [Pd(2)L(2)(mu-dppe)Cl(2)], where LH = 1-methyl-5-phenyl-1H-benzo[e][1,4]diazepin-2(3H)-one (1a), (R)- or (S)-3-isopropyl-1-methyl-5-phenyl-1H-benzo[e][1,4]diazepin-2(3H)-one (1b, 1c), [Pd(2)L(2)(mu-dppf)Cl(2)], where L= 1-methyl-5-phenyl-1H-benzo[e][1,4]diazepin-2(3H)-one (4a) or (R)-3-isopropyl-1-methyl-5-phenyl-1H-benzo[e][1,4]diazepin-2(3H)-one (4b), respectively, and dppe = 1,2-bis(diphenylphosphino)ethane, dppf = 1,1'-bis(diphenylphosphino)ferrocene. The complexes were characterised in solution, by (1)H and (31)P NMR spectroscopy, and single crystals of complexes 6b and 7 were studied in the solid state by X-ray crystallography. The palladacycles were evaluated for in vitro activity as cytotoxic agents on A2780/S cells and also as cathepsin B inhibitors, an enzyme implicated in a number of cancer related events.
Resumo:
We have previously reported that loss-of-function mutations in the cathepsin C gene (CTSC) result in Papillon Lefevre syndrome, an autosomal recessive condition characterized by palmoplantar keratosis and early,onset, severe periodontitis. Others have also reported CTSC mutations in patients with severe prepubertal periodontitis, but without any skin manifestations. The possible role of CTSC variants in more common types of non-mendelian, early-onset, severe periodontitis ("aggressive periodontitis") has not been investigated. In this study, we have investigated the role of CTSC in all three conditions. We demonstrate that PLS is genetically homogeneous and the mutation spectrum that includes three novel mutations (c.386T>A/p. V129E, c.935A>G/p.Q312R, and c.1235A>G/p.Y412C) in 21 PLS families (including eight from our previous study) provides an insight into structure-function relationships of CTSC. Our data also suggest that a complete loss-of-function appears to be necessary for the manifestation of the phenotype, making it unlikely that weak CTSC mutations are a cause of aggressive periodontitis. This was confirmed by analyses of the CTSC activity in 30 subjects with aggressive periodontitis and age-sex matched controls, which demonstrated that there was no significant difference between these two groups (1,728.7 +/- SD 576.8 mu moles/mg/min vs. 1,678.7 +/- SD 527.2 mu moles/mg/min, respectively, p = 0.73). CTSC mutations were detected in only one of two families with prepubertal periodontitis; these did not form a separate functional class with respect to those observed in classical PLS. The affected individuals in the other prepubertal periodontitis family not only lacked CTSC mutations, but in addition did not share the haplotypes at the CTSC locus. These data suggest that prepubertal periodontitis is a genetically heterogeneous disease that, in some families, just represents a partially penetrant PLS. (C) 2004 Wiley-Liss, Inc.