101 resultados para carnitine
Resumo:
In this study we investigated the effect of the acetyl-L-carnitine (ALC) supplementation on the myenteric neurons of the jejunum of rats made diabetic at the age of 105 days by streptozotocin (35 mg/kg body weight). Four groups were used: non-diabetic (C), non-diabetic supplemented with ALC (CC), diabetic (D), diabetic supplemented with ALC (DC). After 15 weeks of diabetes induction the blood was collected by cardiac puncture to evaluate glycaemia and glycated haemoglobin. Next the animals were killed and the jejunum was collected and subjected to whole-mount preparation to evidence the myenteric neurons through the histochemical technique of the NADH-diaphorase. The neuronal counts were made in 80 microscopic fields, in tissue samples of five animals of each group. The profiles of the cell bodies of 1000 neurons per group were analysed. Diabetes induced a significant increase in the area of the cell body and decrease in the number of NADH-diaphorase positive myoenteric neurons. ALC suplementation to the diabetic group promoted smaller hypertrophic effects and less neuronal loss than in the myoenteric neurons of the diabetic rats, and in addition diminished the body weight decrease and reduced the fasting glycaemia. © 2005 Blackwell Verlag.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Bucioli, SA, de Abreu, LC, Valenti, VE, and Vannucchi, H. Carnitine supplementation effects on nonenzymatic antioxidants in young rats submitted to exhaustive exercise stress. J Strength Cond Res 26(6): 1695-1700, 2012-Previous studies have demonstrated that exercise stress increases oxidative stress in rats. However, antioxidant supplement therapy effects on reactive oxygen substances are conflicting. We evaluated the effects of carnitine on renal nonenzymatic antioxidants in young rats submitted to exhaustive exercise stress. Wistar rats were divided into 3 groups: (a) control group (not submitted to exercise stress), (b) exercise stress group, and (c) exercise stress and carnitine group. The rats from group 3 were treated with gavage administration of 1 ml of carnitine (5 mg.kg(-1)) for 7 consecutive days. The animals from groups 2 and 3 were submitted to a bout of swimming exhaustive exercise stress. Kidney samples were analyzed for reactive substances to thiobarbituric acid by malondialdehyde (MDA), reduced glutathione (GSH), and vitamin-E levels. Carnitine treatment attenuated MDA increase caused by exercise stress (1:0.16 +/- 0.02 vs. 2:0.34 +/- 0.07 vs. 3:0.1 +/- 0.01 mmmol per milligram of protein; p < 0.0001). It also increased the renal levels of GSH (1:23 +/- 4 vs. 2:23 +/- 2 vs. 3:58 +/- 9 mu mol per gram of protein; p, 0.0001); however, it did not change renal vitamin E (1:24 +/- 5 vs. 2:27 +/- 1 vs. 3:28 +/- 5 mu M per gram of tissue; p < 0.001). In conclusion, carnitine improved oxidative stress and partially improved the nonenzymatic antioxidant activity in young rats submitted to exhaustive exercise stress.
Resumo:
Background: In this study we evaluated the effects of carnitine and vitamin E supplementation on blood glucose levels in young rats submitted to exhaustive exercise stress. Methods: Wistar rats were divided into four groups: 1) control group; 2) exercise stress group; 3) exercise stress + Vitamin E and; 4) exercise stress + carnitine group. Rats from the group 3 and 4 were treated with gavage administration of 1 mL of Vitamin E (5mg/kg) and carnitine (5mg/kg) for seven consecutive days. Animals from groups 2, 3 and 4 were submitted to a bout of swimming exhaustive exercise stress. We analyzed blood glucose levels after exercise stress. Results: Blood glucose levels after exercise stress were significantly increased in the groups treated with Vitamine E and carnitine (control group: 98.7 +/- 9mg/dL vs. stress group: 84.2 +/- 11 mg/dL vs. carnitine + stress group: 147.4 +/- 15 mg/dL vs. vintamin E + stress: 158.3 +/- 7 mg/dL; p<0.0001). Conclusion: Vitamin E and carnitine supplementation attenuate the hypoglycemia induced by exercise in young rats submitted to exhaustive exercise stress.
Resumo:
Cancer cachexia causes metabolic alterations with a marked effect on hepatic lipid metabolism. l-Carnitine modulates lipid metabolism and its supplementation has been proposed as a therapeutic strategy in many diseases. In the present study, the effects of l-carnitine supplementation on gene expression and on liver lipid metabolism-related proteins was investigated in cachectic tumour-bearing rats. Wistar rats were assigned to receive 1 g/kg of l-carnitine or saline. After 14 days, supplemented and control animals were assigned to a control (N), control supplemented with l-carnitine (CN), tumour-bearing Walker 256 carcinosarcoma (TB) and tumour-bearing supplemented with l-carnitine (CTB) group. The mRNA expression of carnitine palmitoyltransferase I and II (CPT I and II), microsomal triglyceride transfer protein (MTP), liver fatty acid-binding protein (L-FABP), fatty acid translocase (FAT/CD36), peroxisome proliferator-activated receptor-alpha (PPAR-alpha) and organic cation transporter 2 (OCTN2) was assessed, and the maximal activity of CPT I and II in the liver measured, along with plasma and liver triacylglycerol content. The gene expression of MTP, and CPT I catalytic activity were reduced in TB, who also showed increased liver (150%) and plasma (3.3-fold) triacylglycerol content. l-Carnitine supplementation was able to restore these parameters back to control values (p < 0.05). These data show that l-carnitine preserves hepatic lipid metabolism in tumour-bearing animals, suggesting its supplementation to be of potential interest in cachexia.
Resumo:
We examined the capacity of high-intensity intermittent training (HI-IT) to facilitate the delivery of lipids to enzymes responsible for oxidation, a task performed by the carnitine palmitoyl transferase (CPT) system in the rat gastrocnemius muscle. Male adult Wistar rats (160-250 g) were randomly distributed into 3 groups: sedentary (Sed, N = 5), HI-IT (N = 10), and moderate-intensity continuous training (MI-CT, N = 10). The trained groups were exercised for 8 weeks with a 10% (HI-IT) and a 5% (MI-CT) overload. The HI-IT group presented 11.8% decreased weight gain compared to the Sed group. The maximal activities of CPT-I, CPT-II, and citrate synthase were all increased in the HI-IT group compared to the Sed group (P < 0.01), as also was gene expression, measured by RT-PCR, of fatty acid binding protein (FABP; P < 0.01) and lipoprotein lipase (LPL; P < 0.05). Lactate dehydrogenase also presented a higher maximal activity (nmol·min-1·mg protein-1) in HI-IT (around 83%). We suggest that 8 weeks of HI-IT enhance mitochondrial lipid transport capacity thus facilitating the oxidation process in the gastrocnemius muscle. This adaptation may also be associated with the decrease in weight gain observed in the animals and was concomitant to a higher gene expression of both FABP and LPL in HI-IT, suggesting that intermittent exercise is a "time-efficient" strategy inducing metabolic adaptation.
Resumo:
The effect of acetyl-L-carnitine (ALCAR) supplementation to 3-month-old rats in normal-loading and unloading conditions has been here investigated by a combined morphological, biochemical and transcriptional approach to test whether ALCAR might cause a remodeling of the metabolic/contractile phenotype of soleus muscle. Morphological assessment demonstrated an increase of type I oxidative fiber content and cross-sectional area in ALCAR-treated animals both in normal-loading and in unloading conditions. ALCAR prevented loss of mitochondrial mass in unloaded animals whereas no ALCAR-dependent increase of mitochondrial mass occurred in normal-loaded muscle. Validated microarray analysis delineated an ALCAR-induced maintenance of a slow-oxidative expression program only in unloaded soleus muscle. Indeed, the muscle adjustment of the expression profile of factors underlying mitochondrial oxidative metabolism, protein turnover, fiber type differentiation and an adaptation of voltage-gated ion channel expression was distinguishable with respect to the loading status. This selectivity may suggest a key role of muscle loading status in the manifestation of ALCAR effects. The results extend to a broader level of biological informations the previous notion on ALCAR positive effect in rat soleus muscle during unloading and point to a role of ALCAR for the maintenance of its slow-oxidative fiber character.
Resumo:
Carnitine (Car) buffers excess acetyl-CoA through the formation of acetylCar (AcCar). AcCar's acetyl group (AG-AcCar) gives rise to a peak at 2.13 ppm in ¹H MR spectra of skeletal muscle, whereas the trimethylammonium (TMA) groups of both, AcCar and Car, are thought to contribute to the TMA peak at 3.23 ppm. Surprisingly, in previous studies both resonances, AG-AcCar and TMA, increased after exercise. The aim of this study was to assess if the exercise-related TMA increase correlated with AcCar production. Magnetic resonance spectroscopic imaging (pulse repetition time/echo time = 1200/35 ms) was performed before and after prolonged exercise in the lower leg and thigh of eight runners and eight cyclists, respectively. TMA and AG-AcCar increased after exercise (P < 0.001). TMA's increase correlated with the AG-AcCar increase (R² = 0.73, P < 0.001, lower leg; R² = 0.28, P < 0.001, thigh). The correlation of ΔTMA with ΔAG-AcCar suggests that the TMA increase is due to AcCar formation. As total Car (Car + AcCar) remains unchanged with exercise, these findings suggest that the contribution of free Car to the TMA peak is limited and, therefore, is partly invisible in muscle ¹H MR spectra. This indicates that the biochemically relevant cytosolic content of free Car is considerably lower than the overall concentration determined by radioisotopic assays, a potentially important result with respect to regulation of substrate oxidation.
Resumo:
Previous findings in rats and in human vegetarians suggest that the plasma carnitine concentration and/or carnitine ingestion may influence the renal reabsorption of carnitine. We tested this hypothesis in rats with secondary carnitine deficiency following treatment with N-trimethyl-hydrazine-3-propionate (THP) for 2 weeks and rats treated with excess L-carnitine for 2 weeks. Compared to untreated control rats, treatment with THP was associated with an approximately 70% decrease in plasma carnitine and with a 74% decrease in the skeletal muscle carnitine content. In contrast, treatment with L-carnitine increased plasma carnitine levels by 80% and the skeletal muscle carnitine content by 50%. Treatment with L-carnitine affected neither the activity of carnitine transport into isolated renal brush border membrane vesicles, nor renal mRNA expression of the carnitine transporter OCTN2. In contrast, in carnitine deficient rats, carnitine transport into isolated brush border membrane vesicles was increased 1.9-fold compared to untreated control rats. Similarly, renal mRNA expression of OCTN2 increased by a factor of 1.7 in carnitine deficient rats, whereas OCTN2 mRNA expression remained unchanged in gut, liver or skeletal muscle. Our study supports the hypothesis that a decrease in the carnitine plasma and/or glomerular filtrate concentration increases renal expression and activity of OCTN2.
Resumo:
The aim of this study was to identify the mechanisms of hypocarnitinemia in patients treated with valproate.
Resumo:
Carnitine is an amino acid derivative that plays a key role in energy metabolism. Endogenous carnitine is found in its free form or esterified with acyl groups of several chain lengths. Quantification of carnitine and acylcarnitines is of particular interest for screening for research and metabolic disorders. We developed a method with online solid-phase extraction coupled to high-performance liquid chromatography and tandem mass spectrometry to quantify carnitine and three acylcarnitines with different polarity (acetylcarnitine, octanoylcarnitine, and palmitoylcarnitine). Plasma samples were deproteinized with methanol, loaded on a cation exchange trapping column and separated on a reversed-phase C8 column using heptafluorobutyric acid as an ion-pairing reagent. Considering the endogenous nature of the analytes, we quantified with the standard addition method and with external deuterated standards. Solid-phase extraction and separation were achieved within 8 min. Recoveries of carnitine and acylcarnitines were between 98 and 105 %. Both quantification methods were equally accurate (all values within 84 to 116 % of target concentrations) and precise (day-to-day variation of less than 18 %) for all carnitine species and concentrations analyzed. The method was used successfully for determination of carnitine and acylcarnitines in different human samples. In conclusion, we present a method for simultaneous quantification of carnitine and acylcarnitines with a rapid sample work-up. This approach requires small sample volumes and a short analysis time, and it can be applied for the determination of other acylcarnitines than the acylcarnitines tested. The method is useful for applications in research and clinical routine.
Resumo:
The expressional profile of mitochondrial transcripts and of genes involved in the mitochondrial biogenesis pathway induced by ALCAR daily supplementation in soleus muscle of control and unloaded 3-month-old rats has been analyzed. It has been found that ALCAR treatment is able to upregulate the expression level of mitochondrial transcripts (COX I, ATP6, ND6, 16 S rRNA) in both control and unloaded animals. Interestingly, ALCAR feeding to unloaded rats resulted in the increase of transcript level for master factors involved in mitochondrial biogenesis (PGC-1alpha, NRF-1, TFAM). It also prevented the unloading-induced downregulation of mRNA levels for kinases able to transduce metabolic (AMPK) and neuronal stimuli (CaMKIIbeta) into mitochondrial biogenesis. No significant effect on the expressional level of such genes was found in control ALCAR-treated rats. In addition, ALCAR feeding was able to prevent the loss of mitochondrial protein content due to unloading condition. Correlation analysis revealed a strong coordination in the expression of genes involved in mitochondrial biogenesis only in ALCAR-treated suspended animals, supporting a differentiated effect of ALCAR treatment in relation to the loading state of the soleus muscle. In conclusions, we demonstrated the ability of ALCAR supplementation to promote only in soleus muscle of hindlimb suspended rats an orchestrated expression of genes involved in mitochondrial biogenesis, which might counteract the unloading-induced metabolic changes, preventing the loss of mitochondrial proteins.
Resumo:
The aim of this study was to investigate whether a decrease in carnitine body stores is a risk factor for valproic acid (VPA)-associated hepatotoxicity and to explore the effects of VPA on carnitine homeostasis in mice with decreased carnitine body stores. Therefore, heterozygous juvenile visceral steatosis (jvs)(+/-) mice, an animal model with decreased carnitine stores caused by impaired renal reabsorption of carnitine, and the corresponding wild-type mice were treated with subtoxic oral doses of VPA (0.1 g/g b.wt./day) for 2 weeks. In jvs(+/-) mice, but not in wild-type mice, treatment with VPA was associated with the increased plasma activity of aspartate aminotransferase and alkaline phosphatase. Furthermore, jvs(+/-) mice revealed reduced palmitate metabolism assessed in vivo and microvesicular steatosis of the liver. The creatine kinase activity was not affected by treatment with VPA. In liver mitochondria isolated from mice that were treated with VPA, oxidative metabolism of l-glutamate, succinate, and palmitate, as well as beta-oxidation of palmitate, were decreased compared to vehicle-treated wild-type mice or jvs(+/-) mice. In comparison to vehicle-treated wild-type mice, vehicle-treated jvs(+/-) mice had decreased carnitine plasma and tissue levels. Treatment with VPA was associated with an additional decrease in carnitine plasma (wild-type mice and jvs(+/-) mice) and tissue levels (jvs(+/-) mice) and a shift of the carnitine pools toward short-chain acylcarnitines. We conclude that jvs(+/-) mice reveal a more accentuated hepatic toxicity by VPA than the corresponding wild-type mice. Therefore, decreased carnitine body stores can be regarded as a risk factor for hepatotoxicity associated with VPA.
Resumo:
The mitochondrial carnitine palmitoyltransferase (CPT) system is composed of two proteins, CPT-I and CPT-II, involved in the transport of fatty acids into the mitochondrial matrix to undergo $\beta$-oxidation. CPT-I is located outside the inner membrane and CPT-II is located on the inner aspect of the inner membrane. The CPT proteins are distinct with different molecular weights and activities. The malonyl-CoA sensitivity of CPT-I has been proposed as a regulatory step in $\beta$-oxidation. Using the neonatal rat cardiac myocyte, assays were designed to discriminate between these activities in situ using digitonin and Triton X-100. With this methodology, we are able to determine the involvement of the IGF-I pathway in the insulin-mediated increase in CPT activities. Concentrations of digitonin up to 25 $\mu$M fail to release citrate synthase from the mitochondrial matrix or alter the malonyl-CoA sensitivity of CPT-I. If the mitochondrial matrix was exposed, malonyl-CoA insensitive CPT-II would reduce malonyl-CoA sensitivity. In contrast to digitonin, Triton X-100 (0.15%) releases citrate synthase from the matrix and exposes CPT-II. CPT-II activity is confirmed by the absence of malonyl-CoA sensitivity. To examine the effects of various agents on the expression and/or activity of CPT, it is necessary to use serum-free medium to eliminate mitogenic effects of serum proteins. Comparison of different media to optimize CPT activity and cell viability resulted in the decision to use Dulbecco's Modified Eagle medium supplemented with transferrin. In three established models of cardiac hypertrophy using the neonatal rat cardiac myocyte there is a significant increase in CPT-I and CPT-II activity in the treated cells. Analogous to the situation seen in the hypertrophy model, insulin also significantly increases the activity of the mitochondrial proteins CPT-I, CPT-II and cytochrome oxidase with a coinciding increase the expression of CPT-II and cytochrome oxidase mRNA. The removal of serum increases the I$\sb{50}$ (concentration of inhibitor that halves enzyme activity) of CPT-I for malonyl-CoA by four-fold. Incubation with insulin returns I$\sb{50}$ values to serum levels. Incubation with insulin significantly increases malonyl-CoA and ATP levels in the cells with a resulting reduction in palmitate oxidation. Once malonyl-CoA inhibition of CPT-I is removed by permeabilizing the cells, insulin significantly increases the oxidation of palmitoyl-CoA in a manner which parallels the increase in CPT-I activity. Interestingly, CPT-II activity increases significantly only at the tissue culture concentration (1.7 $\mu$M) of insulin suggesting that the IGF-I pathway may be involved. Supporting a role for the IGF-I pathway in the insulin-induced increase in CPT activity is the significant increase in the synthesis of both cellular and mitochondrial proteins as well as increased synthesis of CPT-II. Consistent with an IGF-mediated pathway for the effect of insulin, IGF-I (10 ng/ml) significantly increases the activities of both CPT-I and -II. An IGF-I analogue which inhibits the autophosphorylation of the IGF-I receptor blunts the insulin-mediated increase in CPT-I and -II activity by greater than 70% and virtually eliminates the IGF-I response by greater than 90%. This is the first study to demonstrate the involvement of the IGF-I pathway in the regulation of mitochondrial protein expression, e.g. CPT. ^