933 resultados para carbonium chemistry
Resumo:
The α,ω-diyne 4,7,10-trithiatrideca-2,11-diyne reacts with [RuCl2(PPh3)3] and KPF6 to form the phosphonio-substituted metallatricyclic salt [RuCl(PPh3){κ4C,S,S′,S′′-S(C≡CMe)C2H4SC2H4SC(PPh3)CMe}]PF6 arising from the activation of one alkynyl group toward nucleophilic attack by extraneous phosphine.
Resumo:
A series of porphyrins substituted in one or two meso-positions by diphenylphosphine oxide groups has been prepared by the palladium catalysed reaction of diphenylphosphine or its oxide with the corresponding bromoporphyrins. Compounds {MDPP-[P(O)Ph2]n} (M = H2, Ni, Zn; H2DPP = 5,15-diphenylporphyrin; n = 1, 2) were isolated in yields of 60-95%. The reaction is believed to proceed via the conventional oxidative addition, phosphination and reductive elimination steps, as the stoichiometric reaction of η1-palladio(II) porphyrin [PdBr(H2DPP)(dppe)] (H2DPP = 5,15-diphenylporphyrin; dppe = 1,2-bis(diphenylphosphino)ethane) with diphenylphosphine oxide also results in the desired mono-porphyrinylphosphine oxide [H2DPP-P(O)Ph2]. Attempts to isolate the tertiary phosphines failed due to their extreme air-sensitivity. Variable temperature 1H NMR studies of [H2DPP-P(O)Ph2] revealed an intrinsic lack of symmetry, while fluorescence spectroscopy showed that the phosphine oxide group does not behave as a "heavy atom" quencher. The electron withdrawing effect of the phosphine oxide group was confirmed by voltammetry. The ligands were characterised by multinuclear NMR and UV-visible spectroscopy as well as mass spectrometry. Single crystal X-ray crystallography showed that the bis(phosphine oxide) nickel(II) complex {[NiDPP-[P(O)Ph2]2} is monomeric in the solid state, with a ruffled porphyrin core and the two P=O fragments on the same side of the average plane of the molecule. On the other hand, the corresponding zinc(II) complex formed infinite chains through coordination of one Ph2PO substituent to the neighbouring zinc porphyrin through an almost linear P=O---Zn unit, leaving the other Ph2PO group facing into a parallel channel filled with disordered water molecules. These new phosphine oxides are attractive ligands for supramolecular porphyrin chemistry.
Resumo:
Explanations of the role of analogies in learning science at a cognitive level are made in terms of creating bridges between new information and students’ prior knowledge. In this empirical study of learning with analogies in an 11th grade chemistry class, we explore an alternative explanation at the "social" level where analogy shapes classroom discourse. Students in the study developed analogies within small groups and with their teacher. These classroom interactions were monitored to identify changes in discourse that took place through these activities. Beginning from socio-cultural perspectives and hybridity, we investigated classroom discourse during analogical activities. From our analyses, we theorized a merged discourse that explains how the analog discourse becomes intertwined with the target discourse generating a transitional state where meanings, signs, symbols, and practices are in flux. Three categories were developed that capture how students intertwined the analog and target discourses—merged words, merged utterances/sentences, and merged practices.
Resumo:
Novel profluorescent nitroxides bearing a triazole linker between the coumarin fluorophore and an isoindoline nitroxide were prepared in good yields using the coppercatalyzed azide�alkyne 1,3-dipolar cycloaddition reaction (CuAAC). Nitroxides containing 7-hydroxy and 7-diethylamino substitution on their coumarin rings displayed significant fluorescence suppression, and upon reaction with methyl radicals, normal fluorescence emission was returned. The fluorescence emission for the 7-hydroxycoumarin nitroxide and its diamagnetic analogue was found to be strongly influenced by pH with maximal fluorescence emission achieved in basic solution. Solvent polarity was also shown to affect fluorescence emission. The significant difference in fluorescence output between the nitroxides and their corresponding diamagnetic analogues makes these compounds ideal tools for monitoring processes involving free-radical species.
Resumo:
Poly(styrene)-block-poly(ethylene oxide) copolymers synthesized via the combination of reversible addition fragmentation chain transfer (RAFT) polymerization and hetero Diels–Alder (HDA) cycloaddition can be cleaved in the solid state by a retro-HDA reaction occurring at 90 °C. Nanoporous films can be prepared from these polymers using a simple heating and washing procedure.
Resumo:
This study explores the development of a coding system for analysing test questions in two context-based chemistry exams. We describe our unique analytical procedures before contrasting the data from both tests. Our findings indicate that when a new curriculum is developed such as a context-based curriculum, teachers are required to combine the previously separate domains of context and concept to develop contextualised assessment. We argue that constructing contextualised assessment items requires teachers to view concepts and context as interconnected rather than as separate entities that may polarise scientific endeavour. Implications for practice, curriculum and assessment-development in context-based courses are proposed.
Resumo:
This study investigated whether conceptual development is greater if students learning senior chemistry hear teacher explanations and other traditional teaching approaches first then see computer based visualizations or vice versa. Five Canadian chemistry classes, taught by three different teachers, studied the topics of Le Chatelier’s Principle and dynamic chemical equilibria using scientific visualizations with the explanation and visualizations in different orders. Conceptual development was measured using a 12 item test based on the Chemistry Concepts Inventory. Data was obtained about the students’ abilities, learning styles (auditory, visual or kinesthetic) and sex, and the relationships between these factors and conceptual development due to the teaching sequences were investigated. It was found that teaching sequence is not important in terms of students’ conceptual learning gains, across the whole cohort or for any of the three subgroups.
Resumo:
Scientific visualisations such as computer-based animations and simulations are increasingly a feature of high school science instruction. Visualisations are adopted enthusiastically by teachers and embraced by students, and there is good evidence that they are popular and well received. There is limited evidence, however, of how effective they are in enabling students to learn key scientific concepts. This paper reports the results of a quantitative study conducted in Australian physics and chemistry classrooms. In general there was no statistically significant difference between teaching with and without visualisations, however there were intriguing differences around student sex and academic ability.
Resumo:
Visual modes of representation have always been very important in science and science education. Interactive computer-based animations and simulations offer new visual resources for chemistry education. Many studies have shown that students enjoy learning with visualisations but few have explored how learning outcomes compare when teaching with or without visualisations. This study employs a quasi-experimental crossover research design and quantitative methods to measure the educational effectiveness - defined as level of conceptual development on the part of students - of using computer-based scientific visualisations versus teaching without visualisations in teaching chemistry. In addition to finding that teaching with visualisations offered outcomes that were not significantly different from teaching without visualisations, the study also explored differences in outcomes for male and female students, students with different learning styles (visual, aural, kinesthetic) and students of differing levels of academic ability.
Resumo:
Enormous amounts of money and energy are being devoted to the development, use and organisation of computer-based scientific visualisations (e.g. animations and simulations) in science education. It seems plausible that visualisations that enable students to gain visual access to scientific phenomena that are too large, too small or occur too quickly or too slowly to be seen by the naked eye, or to scientific concepts and models, would yield enhanced conceptual learning. When the literature is searched, however, it quickly becomes apparent that there is a dearth of quantitative evidence for the effectiveness of scientific visualisations in enhancing students’ learning of science concepts. This paper outlines an Australian project that is using innovative research methodology to gather evidence on this question in physics and chemistry classrooms.
Resumo:
Context-based chemistry education aims to improve student interest and motivation in chemistry by connecting canonical chemistry concepts with real-world contexts. Implementation of context-based chemistry programmes began 20 years ago in an attempt to make the learning of chemistry meaningful for students. This paper reviews such programmes through empirical studies on six international courses, ChemCom (USA), Salters (UK), Industrial Science (Israel), Chemie im Kontext (Germany), Chemistry in Practice (The Netherlands) and PLON (The Netherlands). These studies are categorised through emergent characteristics of: relevance, interest/attitudes motivation and deeper understanding. These characteristics can be found to an extent in a number of other curricular initiatives, such as science-technology-society approaches and problem-based learning or project based science, the latter of which often incorporates an inquiry-based approach to science education. These initiatives in science education are also considered with a focus on the characteristics of these approaches that are emphasised in context-based education. While such curricular studies provide a starting point for discussing context-based approaches in chemistry, to advance our understanding of how students connect canonical science concepts with the real-world context, a new theoretical framework is required. A dialectical sociocultural framework originating in the work of Vygotsky is used as a referent for analysing the complex human interactions that occur in context-based classrooms, providing teachers with recent information about the pedagogical structures and resources that afford students the agency to learn.
Resumo:
Concerns regarding groundwater contamination with nitrate and the long-term sustainability of groundwater resources have prompted the development of a multi-layered three dimensional (3D) geological model to characterise the aquifer geometry of the Wairau Plain, Marlborough District, New Zealand. The 3D geological model which consists of eight litho-stratigraphic units has been subsequently used to synthesise hydrogeological and hydrogeochemical data for different aquifers in an approach that aims to demonstrate how integration of water chemistry data within the physical framework of a 3D geological model can help to better understand and conceptualise groundwater systems in complex geological settings. Multivariate statistical techniques(e.g. Principal Component Analysis and Hierarchical Cluster Analysis) were applied to groundwater chemistry data to identify hydrochemical facies which are characteristic of distinct evolutionary pathways and a common hydrologic history of groundwaters. Principal Component Analysis on hydrochemical data demonstrated that natural water-rock interactions, redox potential and human agricultural impact are the key controls of groundwater quality in the Wairau Plain. Hierarchical Cluster Analysis revealed distinct hydrochemical water quality groups in the Wairau Plain groundwater system. Visualisation of the results of the multivariate statistical analyses and distribution of groundwater nitrate concentrations in the context of aquifer lithology highlighted the link between groundwater chemistry and the lithology of host aquifers. The methodology followed in this study can be applied in a variety of hydrogeological settings to synthesise geological, hydrogeological and hydrochemical data and present them in a format readily understood by a wide range of stakeholders. This enables a more efficient communication of the results of scientific studies to the wider community.