965 resultados para capital cost


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Apples at 24 ± 2 °C were heated in a pilot scale hot air assisted (40 °C) continuous pentagonal microwave system, to evaluate the effectiveness of this treatment on insect mortality (variety Mutsu) and fruit quality (variety Granny Smith). An average temperature of 53.4 ± 1.3 °C at core, bottom and flesh of the apple was recorded at the end of the treatment. One hundred percent mortality of the most tolerant stage of Queensland fruit fly (Bactrocera tryoni, Froggatt) and Jarvis's fruit fly (Bactrocera jarvisi, Tryon), were observed when the Mortality value (M52, equivalent time of isothermal treatment at 52 °C) at the slowest heating point applicable for each experiment was ≥ 50 min and ≥ 37 min, respectively. Results showed that microwave heat treatment is effective for insect disinfestation without any adverse impact on total soluble solids, flesh or peel firmness of the treated apples. The treated apples recorded a significantly higher pH and lower ion leakage than the untreated apples after 3 or 4 weeks. Therefore, the microwave heat treatment has the potential to be developed as an alternative chemical free quarantine treatment against economically significant insect pests. Industrial relevance Hot air assisted microwave heating of fruits and vegetables, is more cost effective compared to vapour heat treatment and ionising radiation for disinfestation of insects. Microwave treatment is environmentally friendly compared to fumigation and chemical treatments. Hot air assisted microwave disinfestation can be performed at farms or centralised pack houses since the capital cost would be comparatively lower than vapour heat or ionising radiation treatments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Obtaining drinking water from seawater is usually done through the process of desalination. The conventional desalination processes at present are centralized, require huge capital cost, and enormous amount of concentrated energy from fossil fuel. Issues like optimal chamber pressure, pressure control and energy savings for desalination are not adequately addressed. This paper proposes a novel pressure control method by means of dynamic pressure modulation within the evaporation chamber. A performance index is proposed that results in a dynamic optimal external pressure and maximum energy saving for a specific flow rate. Experimental results from the laboratory setup that validate the proposed concepts are presented in the paper. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, the design basis of the conventional Khadi and Village Industries Commission biogas plants has been elucidated. It has been shown that minimisation of the cost of the gas holder alone leads to the narrow and deep digesters of conventional plants. If instead, the total capital cost of the gas holder plus digester is minimised, the optimisation leads to wide and shallow digesters, which are less expensive. To test this alternative, two prototype plants have been designed, constructed and operated. These plants are not only 25–40% cheaper, but their performance is actually slightly better than the conventional plants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we discuss the design of a manually operated soil compaction machine that is being used to manufacture stabilized soil blocks (SSB). A case study of manufacturing more than three million blocks in a housing project using manually operated machines is illustrated. The paper is focussed on the design, development, and evaluation of a manually operated soil compaction machine for the production of SSB. It also details the machine design philosophy, compaction characteristics of soils, employment generation potential of small-scale stabilized soil block productions systems, and embodied energy. Static compaction of partially saturated soils was performed to generate force-displacement curves in a confined compaction process were generated. Based on the soil compaction data engineering design aspects of a toggle press are illustrated. The results of time and motion study on block production operations using manual machines are discussed. Critical path network diagrams were used for small-scale SSB production systems. Such production systems generate employment at a very low capital cost.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The increasing use of renewable energy technologies for electricity generation, many of which have an unpredictably intermittent nature, will inevitably lead to a greater need for electricity storage. Although there are many existing and emerging storage technologies, most have limitations in terms of geographical constraints, high capital cost or low cycle life, and few are of sufficient scale (in terms of both power and storage capacity) for integration at the transmission and distribution levels. This paper is concerned with a relatively new concept which will be referred to here as Pumped Thermal Electricity Storage (PTES), and which may be able to make a significant contribution towards future storage needs. During charge, PTES makes use of a high temperature-ratio heat pump to convert electrical energy into thermal energy which is stored as ‘sensible heat’ in two thermal reservoirs, one hot and one cold. When required, the thermal energy is then converted back to electricity by effectively running the heat pump backwards as a heat engine. The paper focuses on thermodynamic aspects of PTES, including energy and power density, and the various sources of irreversibility and their impact on round-trip efficiency.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The design and operation of a 5.5 MWe biomass integrated gasification combined cycle (IGCC) demonstration plant, which is located in Xinghua, Jiangsu Province of China, are introduced. It is the largest complete biomass gasification power plant that uses rice husk and other agricultural wastes as fuel in Asia. It mainly consists of a 20 MWt atmospheric circulating fluidized-bed gasifier, a gas-purifying system, 10 sets of 450 kW(e) gas engines, a waste heat boiler, a 1.5 MWe steam turbine, a wastewater treatment system, etc. The demonstration plant has been operating since the end of 2005, and its overall efficiency reaches 26-28%. Its capital cost is less than 1200 USD/kW, and its running cost is about 0.079 USD/kWh based on the biomass price of 35.7 USD/ton. There is a 20% increment on capital cost and 35% decrease on the fuel consumption compared to that of a 1 MW system without a combined cycle. Because only part of the project has been performed, many of the tests still remain and, accordingly, must be reported at a later opportunity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As part of Pilot Project of KIP of CAS, a feasibility study of hydrogen production system using biomass residues is conducted. This study is based on a process of oxygen-rich air gasification of biomass in a downdraft gasifier plus CO-shift. The capacity of this system is 6.4 t biomass/d. Applying this system, it is expected that an annual production of 480 billion N m(3) H-2 will be generated for domestic supply in China. The capital cost of the plant used in this study is 1328$/(N m(3)/h) H-2 out, and product supply cost is 0.15$/N m(3) H-2. The cost sensitivity analysis on this system tells that electricity and catalyst cost are the two most important factors to influence hydrogen production cost.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During tunnel constriction the classification of rock mass is widely used in tunnel design and construction. Moreover it offers the base information about tunnel investment and security. The quick classification of rock mass is very important for not delaying tunnel construction. Nowadays the tunnel engineers usually use initial survey files which are obtained by probe drilling to design a tunnel. It brings the problem that initial surrounding rock classification is usually much different from the real condition during the tunnel construction. Because initial surrounding rock lack credibility, it need us to make real time surrounding rock classification during the tunnel construction, and feed back the result to designers and constructors. Therefore, to find a quick wall rock classification method is very important not only for the time limit for a project but also for not delaying tunnel construction. Not all but many tunnels and underground constructions do suffer form collapse during the period of construction. Although accidental collapse in a large project in civil and geotechnical engineering sometimes appears to be a local event, if it occurred, it can bring about casualties, disrupted,production, construction delay, environmental damage, capital cost etc,therefore, it has been a difficult problem ,both in theory and in practice, establishing how to prevent underground structures form collapse and how to handle such an event in case in occurs. It is important to develop effective solutions and technical measures to prevent and control the collapse. According to the tunnel collapse occurred in Cheng De this paper analyze the main collapse mechanism leading to tunnel collapse and summon up the disposal method when collapse happened. It may be useful for tunnel construction in Cheng De in future. This paper is base on tunnel surrounding rock classification and tunnel support tasks during the tunnel construction in Cheng De area. It aims at solving 4 important problems in tunnel design and construction. 1) The relationship between rock rebound strength and rock single axle compression strength. First we go to the face wall and do rebound test on the tunnel face, then we chose some pieces of rock and do point loading test. Form the tests record we try to find the relationship between rock rebound strength and rock single axle compression strength. 2) The relationship between the value [BQ] and the value Q. First in order to obtain the information of rock character, rock strength, degree of weathering, the structure of rock mass, the joint condition, underground water condition and so on, we go to the tunnel face to do field investigation. And then we use two kinds of rock classification method to make surrounding rock classification. Base on the works above, finally we analyze the relationship between the value [BQ] and the value Q. 3) Sum up the mechanism leading to tunnel collapse and it disposal method in Cheng De area According to the tunnel collapse occurred in Cheng De this paper analyze the main reasons leading to the tunnel collapse and sum up the disposal method when collapse happened. 4) Obtain the properties of steel frame grid by numerical simulation. First we establish the 3D numeral model of steel frame grid by ADINA, and then find the mechanics properties by numerical simulation in ADINA. Second Based on the rock mass geological structure model, we established steel frame grid numeral model which is installed in the tunnel by FLAC3D and simulated the progress of tunnel construction. We hope that the support effect in tunnel can be evaluated from the numerical simulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Absorption heat transformers are thermodynamic systems which are capable of recycling industrial waste heat energy by increasing its temperature. Triple stage heat transformers (TAHTs) can increase the temperature of this waste heat by up to approximately 145˚C. The principle factors influencing the thermodynamic performance of a TAHT and general points of operating optima were identified using a multivariate statistical analysis, prior to using heat exchange network modelling techniques to dissect the design of the TAHT and systematically reassemble it in order to minimise internal exergy destruction within the unit. This enabled first and second law efficiency improvements of up to 18.8% and 31.5% respectively to be achieved compared to conventional TAHT designs. The economic feasibility of such a thermodynamically optimised cycle was investigated by applying it to an oil refinery in Ireland, demonstrating that in general the capital cost of a TAHT makes it difficult to achieve acceptable rates of return. Decreasing the TAHT's capital cost may be achieved by redesigning its individual pieces of equipment and reducing their size. The potential benefits of using a bubble column absorber were therefore investigated in this thesis. An experimental bubble column was constructed and used to track the collapse of steam bubbles being absorbed into a hotter lithium bromide salt solution. Extremely high mass transfer coefficients of approximately 0.0012m/s were observed, showing significant improvements over previously investigated absorbers. Two separate models were developed, namely a combined heat and mass transfer model describing the rate of collapse of the bubbles, and a stochastic model describing the hydrodynamic motion of the collapsing vapour bubbles taking into consideration random fluctuations observed in the experimental data. Both models showed good agreement with the collected data, and demonstrated that the difference between the solution's temperature and its boiling temperature is the primary factor influencing the absorber's performance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The UK government is committed to effectively implement a viable sustainable agenda in the social housing sector. To this end housing associations and local authorities are being encouraged to improve the environmental performance of their new and existing homes. Whilst much attention has been focused on new housing (e.g. the Code for Sustainable Homes) little effort has been focussed on improving the 3.9 (approx) million homes maintained and managed by the public sector (in England), which, given the low rate of new build and demolition (<1% in England), will represent approximately 70% of the public housing stock in 2050. Thus, if UK is to achieve sustainable public housing the major effort will have to focus on the existing stock. However, interpreting the sustainability agenda for an existing housing portfolio is not a straight foreword activity. In addition to finding a ‘technical’ solution, landlords also haveto address the socio-economic issues that balance quality of expectations of tenants with the economic realities of funding social housing refurbishment. This paper will report the findings of a qualitative study (participatory approach) that examined the processes by which a large public landlord sought to develop a long-term sustainable housing strategy. Through a series of individual meetings and group workshops the research team identified: committed leadership; attitudes towards technology; social awareness; and collective understanding of the sustainability agenda as key issues that the organisation needed to address in developing a robust and defendable refurbishment strategy. The paper concludes that the challenges faced by the landlord in improving the sustainability of their existing stock are not primarily technical, but socio-economic. Further, while the economic challenges: initial capital cost; lack of funding; and pay-back periods can be overcome, if the political will exists, by fiscal measures; the social challenges: health & wellbeing; poverty; security; space needs; behaviour change; education; and trust; are much more complex in nature and will require a coordinated approach from all the stakeholders involved in the wider community if they are to be effectively addressed. The key challenge to public housing landlords is to develop mechanisms that can identify and interpret the complex nature of the social sustainability agenda in a way that reflects local aspirations (although the authors believe the factors will exist in all social housing communities, their relative importance is likely to vary between communities) whilst addressing Government agendas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polymer extrusion, in which a polymer is melted and conveyed to a mould or die, forms the basis of most polymer processing techniques. Extruders frequently run at non-optimised conditions and can account for 15–20% of overall process energy losses. In times of increasing energy efficiency such losses are a major concern for the industry. Product quality, which depends on the homogeneity and stability of the melt flow which in turn depends on melt temperature and screw speed, is also an issue of concern of processors. Gear pumps can be used to improve the stability of the production line, but the cost is usually high. Likewise it is possible to introduce energy meters but they also add to the capital cost of the machine. Advanced control incorporating soft sensing capabilities offers opportunities to this industry to improve both quality and energy efficiency. Due to strong correlations between the critical variables, such as the melt temperature and melt pressure, traditional decentralized PID (Proportional–Integral–Derivative) control is incapable of handling such processes if stricter product specifications are imposed or the material is changed from one batch to another. In this paper, new real-time energy monitoring methods have been introduced without the need to install power meters or develop data-driven models. The effects of process settings on energy efficiency and melt quality are then studied based on developed monitoring methods. Process variables include barrel heating temperature, water cooling temperature, and screw speed. Finally, a fuzzy logic controller is developed for a single screw extruder to achieve high melt quality. The resultant performance of the developed controller has shown it to be a satisfactory alternative to the expensive gear pump. Energy efficiency of the extruder can further be achieved by optimising the temperature settings. Experimental results from open-loop control and fuzzy control on a Killion 25 mm single screw extruder are presented to confirm the efficacy of the proposed approach.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Large loads result in expensive foundations which are a substantial proportion of the capital cost of flap-type Wave Energy Converters (WECs). Devices such as Oyster 800, currently deployed at the European Marine Energy Centre (EMEC), comprise a single flap for the full width of the machine. Splitting a flap-type device into smaller vertical flap modules, to make a ‘modular-flap’, might reduce the total foundation loads, whilst still providing acceptable performance in terms of energy conversion.
This paper investigates the foundation loads of an undamped modular-flap device, comparing them to those for a rigid flap of an equivalent width. Physical modelling in a wave tank is used, with loads recorded using a six degree of freedom (DoF) load cell. Both fatigue and extreme loading analysis was conducted. The rotations of the flaps were also recorded, using a motion-tracking system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trabalho desenvolvido para a apresentação em Provas Públicas para atribuição do título de Especialista em Engenharia e Gestão Industrial

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Major construction clients are increasingly looking to procure built facilities on the basis of added value, rather than capital cost. Recent advances in the procurement of construction projects have emphasised a whole-life value approach to meeting the client’s objectives, with strategies put in place to encourage long-term commitment and through-life service provision. Construction firms are therefore increasingly required to take on responsibility for the operation and maintenance of the construction project on the client’s behalf - with the emphasis on value and service. This inevitably throws up a host of challenges, not the least of which is the need for construction firms to manage and accommodate the new emphasis on service. Indeed, these ‘service-led’ projects represent a new realm of construction projects where the rationale for the project is driven by client’s objectives with some aspect of service provision. This vision of downstream service delivery increases the number of stakeholders, adds to project complexity and challenges deeply-ingrained working practices. Ultimately it presents a major challenge for the construction sector. This paper sets out to unravel some of the many implications that this change brings with it. It draws upon ongoing research investigating how construction firms can adapt to a more service-orientated built environment and add value in project-based environments. The conclusions lay bare the challenges that firms face when trying to compete on the basis of added-value and service delivery. In particular, how it affects deeply-ingrained working practices and established relationships in the sector.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Värmedrivna vitvaror eller HWC-maskiner som de kallas av tillverkaren värms med varmt vatten från en cirkulerande krets via en värmeväxlare inbyggd i maskinen, till skillnad från konventionella maskiner som värms med el. Denna teknik skall inte förväxlas med maskiner som är anslutna till varmvattenledningen och fylls på med varmt vatten och som därmed begränsas till disk- och tvätt. Syftet med fjärrvärmedrivna vitvaror är alltså att använda fjärrvärme, som har lägre kvalitet och pris än elenergi för uppvärmning och torkning och på så sätt spara el och utöka fjärrvärmeunderlaget. En jämförelse av koldioxidutsläpp och primärenergianvändning mellan konventionella vitvaror och fjärrvärmedrivna vitvaror visar att både koldioxidutsläpp och primärenergianvändning blir lägre för fjärrvärmedrivna vitvaror om biobränsle anses koldioxidneutralt och den el som ersätts är producerad i kolkraftverk eller gaskombikraftverk.   Denna rapport beskriver utveckling och kommersialisering av värmedrivna vitvaror (disk- och tvättmaskiner samt torktumlare och torkskåp) och hur de kan anslutas mot fjärrvärmesystem i olika systemlösningar. Dessutom har de energimässiga och ekonomiska förutsättningarna för tekniken undersökts. Erfarenheterna från fältprovning är dock mycket begränsade, eftersom de byggen där fälttesterna skulle ske försenades. Under 2013 färdigställs ett flerbostadshus med värmedrivna vitvaror i 160 lägenheter i Västerås.   De utvecklade maskinernas värmeanvändning som andel av total energianvändning vid 60 graders framledningstemperatur har uppmätts till ca 50 % för diskmaskinen, 67 % för tvättmaskinen, 80 % för torktumlaren och 93 % för torkskåpet. I det studerade flerbostadshuset av passivhusstandard uppgår lasten från värmedrivna vitvaror komfortgolvvärme och handdukstorkar till upp mot 30 % av husets totala värmeanvändning. För småhus är motsvarande siffra upp mot 20 %. Att använda fjärrvärme istället för elvärme till dessa installationer som normalt är elvärmda kan allts minska elbehovet betydligt i lågenergibebyggelse vilket också minskar både koldioxidutsläppen och primärenergianvändningen.   Ekonomiska analyser har genomförts för två olika systemkoncept (separat vitvarukrets och Västeråsmodellen) för nybyggda småhusområden och flerfamiljshus där fjärrvärme inte bara används till vitvaror utan också till handdukstorkar och komfortgolvvärme. De ekonomiska analyserna visar att Västeråsmodellen är den mest ekonomiskt intressanta systemlösningen med värmedrivna vitvaror, handdukstork och komfortgolvvärme. I flerfamiljshus kan den vara konkurrenskraftig mot de elvärmda alternativen (konventionellt system med eldrivna vitvaror, komfortgolvvärme och handdukstorkar) om prisskillnaden mellan el och fjärrvärme är större än 0,7 kr/kWh. En parameterstudie visar att kapitalkostnaden blir ganska hög jämfört med energikostnaden, vilket betyder att lång livslängd och många cykler är viktigt för att förbättra de ekonomiska förutsättningarna för värmedrivna vitvaror. För passiva småhus blir kostnaden för Västeråsmodellen med värmedrivna vitvaror, handdukstork och komfortgolvvärme likvärdig med de elvärmda alternativen vid energiprisskillnader på 0,7 kr/kWh inklusive moms, medan det krävs prisskillnader på 0,9 kr/kWh inklusive moms för normalisolerade småhusområden.   Sammanfattningsvis kan sägas att i kommuner med ett konkurrenskraftigt fjärrvärmepris finns det viss lönsamhet för hela konceptet enligt Västeråsmodellen med värmedrivna vitvaror, komfortgolvvärme, och handdukstorkar. Om man däremot ser på konkurrensen för enskilda vitvaror är det främst torktumlaren som är konkurrenskraftig i bostäder. Målpriset på 1000 kr extra för värmedrift har inte kunnat uppnås inom projektet för diskmaskiner och tvättmaskiner. Det krävs lägre priser och låga anslutningskostnader för att räkna hem diskmaskinen och tvättmaskinen som enskilda komponenter.   Värmedrivna tvättmaskiner och torktumlare är konkurrenskraftiga i flerfamiljstvättstugor. Speciellt i de fall där beläggningen är god och flera maskiner delar på anslutningskostnaden till fjärrvärmecentralen kan värmedrift bli riktigt lönsam. Torkskåpens konkurrenskraft har inte kunnat utvärderas, då priset ännu inte fastställts. Att använda VVC-systemet för värmedistribution till värmedrivna vitvaror kan vara mycket intressant, men det kräver att legionellaproblematiken kan lösas. I nuläget finns ingen lösning som uppfyller formuleringarna i boverkets byggregler. Ett annat distributionssätt som kan vara intressant, men som inte undersökts i studien är att använda VVC för varmvattendistribution och en gemensam radiator- och vitvarukrets med konstant framledningstemperatur. Den aktör som förväntas ha störst ekonomiskt intresse av att tekniken implementeras är sannolikt fjärrvärmebolagen som får sälja mer värme och det ligger därmed främst på deras ansvar att marknadsföra tekniken i mötet med sina kunder.