850 resultados para building information modelling
Resumo:
Dissertação de mestrado em Construção e Reabilitação Sustentáveis
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
Dissertação de mestrado integrado in Civil Engineering
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
This thesis investigated building information modeling (BIM) from a material supplier’s point of view. The objective was to gain understanding about how a building material supplier could benefit from the growing use of BIM in the AEC (architectural, engineering and construction) industry. Increasing amount of inquiries related to BIM from customers and other interest groups had awoken target company’s interest towards BIM. This thesis acts as a pre-study for the target company related to potential of BIM. First of all BIM and its meaning from a material supplier’s point of view was defined based on a literature review. To reveal the potential benefits of BIM for a material supplier a questionnaire survey and in total of 11 interviews were conducted. Based on the literature review and analyzed results it came clear that BIM offers benefits also for material suppliers. Product libraries and material databases for BIM tools can act as an important marketing channel for material suppliers. Material suppliers could also utilize the information from the BIM models to schedule their deliveries more precisely and potentially even to schedule their own production. All this needs deeper cooperation between material suppliers, contractors and other stakeholders in the AEC industry. Based on the results also first steps for the target company to utilize the growing use of BIM were defined.
Resumo:
Building Information Modeling – BIM is widely spreading in the Architecture, Engineering, and Construction (AEC) industries. Manufacturers of building elements are also starting to provide more and more objects of their products. The ideal availability and distribution for these models is not yet stabilized. Usual goal of a manufacturer is to get their model into design as early as possible. Finding the ways to satisfy customer needs with a superior service would help to achieve this goal. This study aims to seek what case company’s customers want out of the model and what they think is the ideal way to obtain these models and what are the desired functionalities for this service. This master’s thesis uses a modified version of lead user method to gain understanding of what the needs are in a longer term. In this framework also benchmarking of current solutions and their common model functions is done. Empirical data is collected with survey and interviews. As a result this thesis provides understanding that what is the information customer uses when obtaining a model, what kind of model is expected to be achieved and how is should the process optimally function. Based on these results ideal service is pointed out.
Resumo:
Smooth flow of production in construction is hampered by disparity between individual trade teams' goals and the goals of stable production flow for the project as a whole. This is exacerbated by the difficulty of visualizing the flow of work in a construction project. While the addresses some of the issues in Building information modeling provides a powerful platform for visualizing work flow in control systems that also enable pull flow and deeper collaboration between teams on and off site. The requirements for implementation of a BIM-enabled pull flow construction management software system based on the Last Planner System™, called ‘KanBIM’, have been specified, and a set of functional mock-ups of the proposed system has been implemented and evaluated in a series of three focus group workshops. The requirements cover the areas of maintenance of work flow stability, enabling negotiation and commitment between teams, lean production planning with sophisticated pull flow control, and effective communication and visualization of flow. The evaluation results show that the system holds the potential to improve work flow and reduce waste by providing both process and product visualization at the work face.
Resumo:
There is a growing concern in reducing greenhouse gas emissions all over the world. The U.K. has set 34% target reduction of emission before 2020 and 80% before 2050 compared to 1990 recently in Post Copenhagen Report on Climate Change. In practise, Life Cycle Cost (LCC) and Life Cycle Assessment (LCA) tools have been introduced to construction industry in order to achieve this such as. However, there is clear a disconnection between costs and environmental impacts over the life cycle of a built asset when using these two tools. Besides, the changes in Information and Communication Technologies (ICTs) lead to a change in the way information is represented, in particular, information is being fed more easily and distributed more quickly to different stakeholders by the use of tool such as the Building Information Modelling (BIM), with little consideration on incorporating LCC and LCA and their maximised usage within the BIM environment. The aim of this paper is to propose the development of a model-based LCC and LCA tool in order to provide sustainable building design decisions for clients, architects and quantity surveyors, by then an optimal investment decision can be made by studying the trade-off between costs and environmental impacts. An application framework is also proposed finally as the future work that shows how the proposed model can be incorporated into the BIM environment in practise.
Resumo:
Taking a perspective from a whole building lifecycle, occupier's actions could account for about 50% of energy. However occupants' activities influence building energy performance is still a blind area. Building energy performance is thought to be the result of a combination of building fabrics, building services and occupants' activities, along with their interactions. In this sense, energy consumption in built environment is regarded as a socio-technical system. In order to understand how such a system works, a range of physical, technical and social information is involved that needs to be integrated and aligned. This paper has proposed a semiotic framework to add value for Building Information Modelling, incorporating energy-related occupancy factors in a context of office buildings. Further, building information has been addressed semantically to describe a building space from the facility management perspective. Finally, the framework guides to set up building information representation system, which can help facility managers to manage buildings efficiently by improving their understanding on how office buildings are operated and used.
Resumo:
PEDRINI, Aldomar; WESTPHAL, F. S.; LAMBERT, R.. A methodology for building energy modelling and calibration in warm climates. Building And Environment, Australia, n. 37, p.903-912, 2002. Disponível em:
Resumo:
Dalla raffigurazione artistica fino alla modellazione digitale, passando per il disegno tecnico, la rappresentazione del progetto d’architettura ha conosciuto nel tempo evoluzioni significative che solo di recente hanno raggiunto l’apice nell’utilizzo di modelli cognitivi in grado di collezionare ed organizzare il patrimonio di informazioni che gravitano attorno all’intero processo edilizio. L’impiego sempre più diffuso dello strumento informatico, insieme al coordinamento delle specializzazioni nelle molte discipline coinvolte nel progetto, ha favorito negli ultimi anni l’adozione del Building Information Modeling un processo che permette di rivoluzionare il mondo delle costruzioni, coprendo molteplici aspetti del ciclo di vita per un manufatto edilizio. Questa Tesi intende presentare in maniera specifica le tappe che hanno consentito il formarsi del BIM. La migliore capacità di gestione, un linguaggio comune tra i progettisti, un’ottimizzazione di risorse e costi, unito ad un controllo convincente ed accurato delle fasi di lavoro, sono alcune delle potenzialità non ancora completamente espresse dal Building Information Modeling che è destinato a divenire una consapevolezza strategica nel bagaglio culturale del professionista contemporaneo.
Resumo:
The construction industry has long been considered as highly fragmented and non-collaborative industry. This fragmentation sprouted from complex and unstructured traditional coordination processes and information exchanges amongst all parties involved in a construction project. This nature coupled with risk and uncertainty has pushed clients and their supply chain to search for new ways of improving their business process to deliver better quality and high performing product. This research will closely investigate the need to implement a Digital Nervous System (DNS), analogous to a biological nervous system, on the flow and management of digital information across the project lifecycle. This will be through direct examination of the key processes and information produced in a construction project and how a DNS can provide a well-integrated flow of digital information throughout the project lifecycle. This research will also investigate how a DNS can create a tight digital feedback loop that enables the organisation to sense, react and adapt to changing project conditions. A Digital Nervous System is a digital infrastructure that provides a well-integrated flow of digital information to the right part of the organisation at the right time. It provides the organisation with the relevant and up-to-date information it needs, for critical project issues, to aid in near real-time decision-making. Previous literature review and survey questionnaires were used in this research to collect and analyse data about information management problems of the industry – e.g. disruption and discontinuity of digital information flow due to interoperability issues, disintegration/fragmentation of the adopted digital solutions and paper-based transactions. Results analysis revealed efficient and effective information management requires the creation and implementation of a DNS.
Resumo:
L’obiettivo della tesi è quello di fare una panoramica sulla strategia BIM e quindi sulla digitalizzazione del processo costruttivo. Grazie alla analisi di un caso di studio, altro obiettivo è quello di analizzare e valutare la metodologia BIM 4D/5D, ossia la gestione dei tempi e dei costi di realizzazione dell’opera. Nella prima fase si affronta il tema del BIM, con una analisi sull’evoluzione degli strumenti di elaborazione e rappresentazione digitale del progetto architettonico, su come questi strumenti si differenzino sia dal punto di vista operativo che concettuale rivoluzionando il flusso di lavoro odierno. Quindi, partendo da un’analisi che e ritrae l’estrema frammentazione del settore delle costruzioni, si va ad analizzare come il BIM aumenti e favorisca la collaborazione delle parti interessate, armonizzando l’intero processo costruttivo dell’opera. Si prosegue con l'esame della diffusione e del livello di maturità degli strumenti BIM, di come i privati e le amministrazioni pubbliche, a livello mondiale, stiano spingendo per favorire l’adozione della metodologia BIM. Inoltre si analizzano le dinamiche dell’interoperabilità, delle metodologie e protocolli di interscambio dati, che sono un elemento chiave per il successo del BIM per via dei numerosi strumenti, specializzati nelle varie discipline del settore edile. Nella terza parte, dedicata al Project Management di un caso di studio, si verifica la bontà delle metodologie teorizzate attraverso la realizzazione di un modello virtuale in Revit. Dal modello realizzato dal laureando sono estrapolate le informazioni necessarie alla gestione, e tramite il software STRVison CPM, si elaborano i principali documenti per la progettazione e gestione del cantiere: il CM, il CME, i tempi operativi, il cronoprogramma Gantt. Obbiettivo è constatare l’effettivo livello di maturità della strategia BIM 4D e 5D e la reale possibilità di un impiego capillare nel panorama italiano del settore delle costruzioni.
Resumo:
A method for measurement and visualization of the complex transmission coefficient of 2-D micro- objects is proposed. The method is based on calculation of the transmission coefficient from the diffraction pattern and the illumination aperture function for monochromatic light. A phase-stepping method was used for diffracted light phase determination.