984 resultados para branch number
Resumo:
The carbohydrates translocation and consequently growth and production of fig tree (Ficuscarica L.) vary according to the different management on cultivation conditions. The aim of this study was to evaluate the changes in the levels and total carbohydrates accumulation together with growth and “Roxo de Valinhos” fig trees production onimplementation of orchards in initial phase, cultivated with and without irrigation. We adopted a factorial arrangement (2 x 7) with four repetitions distributed in installments (with and without irrigation) subdivided in time (collect time). Destructive analyzes were performed at 40, 80, 120, 160, 200, 240 and 280 days after pruning (DAP) and are measured: stem diameter and branch, stem length and branch, number of leaves, internodes and fruit. Subsequently, the plant parts were sectioned to obtain the leaf area, length and roots volume, fresh and dry matter weight. The number, weight and total productivity of fruits were evaluated. The media of all growth attributes and production characteristics were higher in treatments with water irrigation. The total carbohydrate content was higher at 120 and 160 DAP and the carbohydrates accumulation was increasing for most institutions over the plants development, except for the leaves that showed a decrease in the levels at 160 DAP. The fruits showed greater carbohydrates accumulation in relation to the other evaluated organs.
Comparative functional analysis of factors controlling glial differentiation in Drosophila and mouse
Resumo:
The present study is a comparative functional analysis of three factors controlling glial differentiation in mouse (Fyn Src kinase, hnRNPF/H and NG2) and their homologues in Drosophila (Src42A and 64B, Glorund and Kon-tiki (Kon)). In Drosophila, mutations in any of these genes were not associated with major embryonic neurodevelopmental phenotypes. Src kinases and Glorund were shown to be ubiquitously expressed, whereas kon mRNA showed selective expression in muscles as well as in central and peripheral glia. Kon was also shown to be expressed in L3 larvae with high levels of protein accumulation at the neuromuscular junction (NMJ) and in muscles in the form of speckles. Knockdown of kon in glia resulted in NMJ phenotypes, mainly characterized by a significant increase in bouton number and a reduction in α-Konecto staining intensity at the NMJ. From the three glial layers ensheathing the peripheral nervous system, subperineurial glial showed to be the one contributing the most to kon knockdown dependent NMJ phenotypes, while perineurial glia only had a minor role. The knockdown of kon in glia also showed to affect Glutamate receptor subunit (α-GluRIIA) clustering in the postsynapse, same as microtubule arrangement in the presynapse, as seen by α-Futsch pattern interruptions and alterations. kon knockdown in glia also resulted in impaired axonal transport, as seen by the accumulation of Bruchpilot-positive vesicles along the nerves, abnormal formation of neuronal derived protrusions and swellings, filled with vacuole-like structures. Glia number along the peripheral nerves is also reduced as consequence of kon knockdown. Muscle derived Kon was shown to accumulate at the NMJ and play a role in bouton consolidation and to interfere with phagocytosis of ghost boutons. NMJ bouton and branch number was also significantly increased in Kon overexpression in glia. The overexpression of Kon in glia also resulted in a massive elongation of the ventral nerve cord, which served in a suppressor screen to identify intracellular interaction partners of Kon in glia. It was shown that Kon is processed in glia and preliminary results indicate that the metalloendopeptidase Kuzbanian (the fly homologue of ADAM10) may play a role in the shedding of Konecto. In the present work, Kon is shown as a multifunctional gene with various roles in glia-neuron and glia-neuron-muscle interaction.
Resumo:
Fast-growing tree species of Populus spp.,Salix spp. and Eucalyptus spp. are cultivated to produce wood in a short time. Poplars are cultivated with cycles of 15-18 years to obtain saw timber and peeler logs, but when grown as short -rotation coppice(SRC) to produce biomass, planting density increases and rotation is considerably reduced (3-5 years). In this regard, research efforts are focused in the identification of traits and loci that allow the generation of improved SRC biomass-yielding genotypes. Biomass yield is a highly complex trait as it is the combined outcome of many other complex traits, each under separate polygenic control. Among profitable biomass yield-related traits are the amount of sylleptic branching and the length of winter dormancy. In poplar and in a few other Salicaceae species some lateral buds grow out sylleptically, the same season in which they form without the need of an intervening rest period. Sylleptic branching in poplar increases branch number, leaf area and general growth of the tree in its early years, and is a reasonable predictor of coppice yield. On the other hand, the length of winter dormancy determines the extent of the growth period. Our group has characterized the RAV1 gene of Castanea sativa (CsRAV1), encoding a transcription factor of the subfamily RAV (Related to ABI3/VP1). CsRAV1 expression shows a marked seasonal pattern, being higher in autumn and winter both in stems and buds. We generated transgenic lines of the hybrid clone Populus tremulax P. alba INRA 717 1B4 constitutively expressing CsRAV 1. These CsRAV1-expressing poplars develop sylleptic branches only a few weeks after potting. In addition to the sylleptic branching phenotype, these trees show phenological features that could give rise to an extended growth period. We are currently assessing the phenotype and behavior of these transgenic trees in a field trial, and ultimately, we will evaluate the impact on lignocellulosic biomass quality and production.
Resumo:
Trichome development is dependent on gibberellin (GA) signaling in Arabidopsis thaliana. Using the GA-deficient mutant ga1–3, the GA-response mutant spy-5, and uniconazol (a GA-biosynthesis inhibitor), we show that the GA level response correlates positively with both trichome number and trichome branch number. Two genes, GL1 and TTG, are required for trichome initiation. In ga1–3, coexpression of GL1 and R, the maize TTG functional homolog, under control of the constitutive 35S promoter, restored trichome development, whereas overexpression of neither GL1 nor R alone was sufficient to significantly suppress the glabrous phenotype. We next focused on GL1 regulation by GAs. In the double mutant the gl1–1 glabrous phenotype is epistatic to the spy-5 phenotype, suggesting that GL1 acts downstream of the GA signal transduction pathway. The activity of a β-glucuronidase reporter gene driven by the GL1 promoter was decreased in the wild type grown on uniconazol and showed a clear GA-dependent activation in ga1–3. Finally, quantification of GL1 transcript levels by reverse transcriptase-polymerase chain reaction demonstrated that relative to wild type, ga1–3 plants contained less transcript. These data support the hypothesis that GAs induce trichome development through up-regulation of GL1 and possibly TTG genes.
Resumo:
Sequence data often have competing signals that are detected by network programs or Lento plots. Such data can be formed by generating sequences on more than one tree, and combining the results, a mixture model. We report that with such mixture models, the estimates of edge (branch) lengths from maximum likelihood (ML) methods that assume a single tree are biased. Based on the observed number of competing signals in real data, such a bias of ML is expected to occur frequently. Because network methods can recover competing signals more accurately, there is a need for ML methods allowing a network. A fundamental problem is that mixture models can have more parameters than can be recovered from the data, so that some mixtures are not, in principle, identifiable. We recommend that network programs be incorporated into best practice analysis, along with ML and Bayesian trees.
Resumo:
In present study, the transition of thermocapillary convection from the axisymmetric stationary flow to oscillatory flow in liquid bridges of 5cst silicon oil (aspect ratio 1.0 and 1.6) is investigated in microgravity conditions by the linear instability analysis. The corresponding marginal instability boundary is closely related to the gas/liquid configuration of the liquid bridge noted as volume ratio. With the increasing volume ratio, the marginal instability boundary consists of the increasing branch and the decreasing branch. A gap region exists between the branches where the critical Marangoni number of the corresponding axisymmetric stationary flow increases drastically. Particularly, a unique axisymmetric oscillatory flow (the critical azimuthal wave number is m=0) in the gap region is reported for the liquid bridge of aspect ratio 1.6. Moreover, the energy transfer between the basic state and the disturbance fields of the thermocapillary convection is analyzed at the corresponding critical Marangoni number, which reveals different major sources of the energy transfer for the development of the disturbances in regimes of the increasing branch, the gap region and the decreasing branch, respectively.
Resumo:
Darwin's On the Origin of Species has led to a theory of evolution with a mass of empirical detail on population genetics below species level, together with heated debate on the details of macroevolutionary patterns above species level. Most of the main principles are clear and generally accepted, notably that life originated once and has evolved over time by descent with modification. Here, I review the fossil and molecular phylogenetic records of the response of life on Earth to Quaternary climatic changes. I suggest that the record can be best understood in terms of the nonlinear dynamics of the relationship between genotype and phenotype, and between climate and environments. 'The origin of species' is essentially unpredictable, but is nevertheless an inevitable consequence of the way that organisms reproduce through time. The process is 'chaotic', but not 'random'. I suggest that biodiversity is best considered as continuously branching systems of lineages, where 'species' are the branch tips. The Earth's biodiversity should thus (1) be in a state of continuous increase and (2) show continuous discrepancies between genetic and morphological data in time and space. © The Palaeontological Association.
Resumo:
Thesis (Ph.D.)--University of Washington, 2014
Resumo:
This paper provides a contribution to the contingency analysis of electric power systems under steady state conditions. An alternative methodology is presented for static contingency analyses that only use continuation methods and thus provides an accurate determination of the loading margin. Rather than starting from the base case operating point, the proposed continuation power flow obtains the post-contingency loading margins starting from the maximum loading and using a bus voltage magnitude as a parameter. The branch selected for the contingency evaluation is parameterised using a scaling factor, which allows its gradual removal and assures the continuation power flow convergence for the cases where the method would diverge for the complete transmission line or transformer removal. The applicability and effectiveness of the proposed methodology have been investigated on IEEE test systems (14, 57 and 118 buses) and compared with the continuation power flow, which obtains the post-contingency loading margin starting from the base case solution. In general, for most of the analysed contingencies, few iterations are necessary to determine the post-contingency maximum loading point. Thus, a significant reduction in the global number of iterations is achieved. Therefore, the proposed methodology can be used as an alternative technique to verify and even to obtain the list of critical contingencies supplied by the electric power systems security analysis function. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper a novel Branch and Bound (B&B) algorithm to solve the transmission expansion planning which is a non-convex mixed integer nonlinear programming problem (MINLP) is presented. Based on defining the options of the separating variables and makes a search in breadth, we call this algorithm a B&BML algorithm. The proposed algorithm is implemented in AMPL and an open source Ipopt solver is used to solve the nonlinear programming (NLP) problems of all candidates in the B&B tree. Strategies have been developed to address the problem of non-linearity and non-convexity of the search region. The proposed algorithm is applied to the problem of long-term transmission expansion planning modeled as an MINLP problem. The proposed algorithm has carried out on five commonly used test systems such as Garver 6-Bus, IEEE 24-Bus, 46-Bus South Brazilian test systems, Bolivian 57-Bus, and Colombian 93-Bus. Results show that the proposed methodology not only can find the best known solution but it also yields a large reduction between 24% to 77.6% in the number of NLP problems regarding to the size of the systems.
Resumo:
PURPOSE: To establish a model to quantitative histological analysis of the mandibular branch of the facial nerve in rats. METHODS: Eleven Wistar rats had their right and left mandibular branches of the facial nerve surgically removed and were sacrificed afterwards. Quantitative histological analysis was performed with: a) partial number of axons; b) partial area of the transversal cut of the nerve (9000 mu m(2)); c) partial density. The averages of partial density were obtained. The statistical study was established by Wilcoxon test (p=0.05). RESULTS: In relation to density of axons, comparison between sides shows no statistically significant difference (p=0.248; p=0.533). Mean partial density of distal and proximal samples was, respectively, 0.18 +/- 0.02 and 0.19 +/- 0.02 axons/mu m(2). Comparison between proximal and distal samples shows no statistically significant difference (p=0.859; p=0.182). CONCLUSION: This study has successfully established a model to histological quantitative analysis of the mandibular branch of the facial nerve in rats.
Resumo:
Tenascin-C (TNC) is a multidomain extracellular matrix protein that contributes to organogenesis and tumorgenesis. To elucidate its developmental function in the context of TNC deficiency, lung lobes of TNC null mice were obtained at Embryonic Days E11.5 and E12.5 and cultured for 3 d. In lung explants of homozygote TNC-deficient embryos (E12.5) the number of future airway branches was reduced by 36% as compared with wild-type. In heterozygote explants only half of the reduction (18%) was observed. No significant alteration, neither of the explant growth nor of the pattern of airway branching, was noticed in TNC-null explants. However, the terminal endbuds of the transgenic explants were enlarged. The results are supported by a morphologic investigation at Postnatal Day P2, where the airspaces of TNC-deficient lungs appeared larger than in wild-type lungs. Taken together, our results represent the first developmental phenotype of TNC-null mice. We conclude that TNC takes part in the control of fetal lung branching, and that not only the presence of TNC but also its amount is important. Because TNC is predominantly expressed at the growing tip of the future airways, we hypothesize that TNC promotes the penetration into the surrounding mesenchyme and the branching of the growing airways.
Resumo:
AIMS In this work, we provide novel insight into the morphology of dissecting abdominal aortic aneurysms in angiotensin II-infused mice. We demonstrate why they exhibit a large variation in shape and, unlike their human counterparts, are located suprarenally rather than infrarenally. METHODS AND RESULTS We combined synchrotron-based, ultra-high resolution ex vivo imaging (phase contrast X-Ray tomographic microscopy) with in vivo imaging (high-frequency ultrasound and contrast-enhanced micro-CT) and image-guided histology. In all mice, we observed a tear in the tunica media of the abdominal aorta near the ostium of the celiac artery. Independently we found that, unlike the gradual luminal expansion typical for human aneurysms, the outer diameter increase of angiotensin II-induced dissecting aneurysms in mice was related to one or several intramural haematomas. These were caused by ruptures of the tunica media near the ostium of small suprarenal side branches, which had never been detected by the established small animal imaging techniques. The tear near the celiac artery led to apparent luminal dilatation, while the intramural haematoma led to a dissection of the tunica adventitia on the left suprarenal side of the aorta. The number of ruptured branches was higher in those aneurysms that extended into the thoracic aorta, which explained the observed variability in aneurysm shape. CONCLUSION Our results are the first to describe apparent luminal dilatation, suprarenal branch ruptures, and intramural haematoma formation in dissecting abdominal aortic aneurysms in mice. Moreover, we validate and demonstrate the vast potential of phase contrast X-ray tomographic microscopy in cardiovascular small animal applications.