49 resultados para brachiopod


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dorsal valve of a Pleistocene terebratulid brachiopod, Terebratula scillae Seguenza, 1871, has developed a malignant cyst due to colonization in vivo by an endolithic sponge.This trace fossil is a compound boring and bioclaustration structure, representing a boring that has grown in unison with the growth of the cyst. The brachiopod has grown to adult size and growthlines indicate that it was colonised by the sponge when about half grown. Malformation of the shell may not have caused the death of the brachiopod and the sponge does not appear to have outlived its host; both symbionts seem to have died more or less simultaneously. This minus-minus relationship of two symbionts is considered to be a case of 'accidental symbiosis'.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magellania venosa, the largest recent brachiopod, occurs in clusters and banks in population densities of up to 416 ind/m**2 in Comau Fjord, Northern Chilean fjord region. Below 15 m, it co-occurs with the mytilid Aulacomya atra and it dominates the benthic community below 20 m. To determine the question of why M. venosa is a successful competitor, the in situ growth rate of the brachiopod was studied and its overall growth performance compared with that of other brachiopods and mussels. The growth in length was measured between February 2011 and March 2012 after mechanical tagging and calcein staining. Settlement and juvenile growth were determined from recruitment tiles installed in 2009 and from subsequent photocensus. Growth of M. venosa is best described by the general von Bertalanffy growth function, with a maximum shell length (Linf) of 71.53 mm and a Brody growth constant (K) of 0.336/year. The overall growth performance (OGP index = 5.1) is the highest recorded for a rynchonelliform brachiopod and in the range of that for Mytilus chilensis (4.8-5.27), but lower than that of A. atra (5.74). The maximal individual production (PInd) is 0.29 g AFDM/ind/year at 42 mm shell length and annual production ranges from 1.28 to 89.25 g AFDM/year/m**2 (1-57% of that of A. atra in the respective fjords). The high shell growth rate of M. venosa, together with its high overall growth performance may explain the locally high population density of this brachiopod in Comau Fjord. However, the production per biomass of the population (P/B-ratio) is low (0.535) and M. venosa may play only a minor role in the food chain. Settling dynamics indicates that M. venosa is a pioneer species with low juvenile mortality. The coexistence of the brachiopod and bivalve suggests that brachiopod survival is affected by neither the presence of potential brachiopod predators nor that of space competitors (i.e. mytilids).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New data on brachiopod assemblages recorded in the Eastern Subbetic area (Alicante, SE Spain) and attributed to the Early Bajocian (Humphriesianum Zone and/or immediately older) are provided. Eleven species have been distinguished and reported for the first time in the Subbetic domain of the Betic Cordillera. The description of the morphological evidences on each analysed taxa, especially in relation to their internal morphology, brings new implications in the systematics of the Middle Jurassic brachiopods. The analysis of faunistic affinity between the recorded assemblages and those from other palaeogeographic domains, shows that the Subbetic brachiopod fauna has a clear Mediterranean affinity, as proved by the different species belonging to the genera Striirhynchia, Septocrurella, Mondegia?, Karadagithyris, Linguithyris, Papodina?, Viallithyris?, and Zugmayeria?. It is also evidenced that the Early-Middle Jurassic transition in the Eastern Subbetic accounted, in qualitative terms, a remarkable interval of faunistic renewal in the brachiopod assemblages, strongly influenced by a complex tectonic and stratigraphic framework controlled by a period of intense extensional tectonics, globally framed in the evolution of the Atlantic Ocean.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The assemblages of Early Jurassic brachiopods (Pliensbachian - Toarcian) from Sierra Espuña (Murcia Province, SE Spain) are described. This is the only area in the Internal Zones of the Betic Cordillera, corresponding to the margins of the Alborán Terrane, where Jurassic brachiopods are known to occur. In the tectonic Unit of Morrón de Totana (more southward located) assemblage MT1 of Late Pliensbachian age has been characterized. This assemblage has been subdivided into three successive sub-assemblages: MT1a (Algovianum Zone), MT1b (Emaciatum Zone, Solare Subzone) and MT1c (Emaciatum Zone, Elisa Subzone). Northward, in the Perona tectonic Unit two distinct assemblages, P1 (Latest Sinemurian - Early Pliensbachian) and P2 (Early Toarcian, Serpentinum Zone) have been recognized. Differences between the assemblages from the two tectonic units are evident after the paleobiogeographical analysis. In the Morrón de Totana Unit, taxa with Mediterranean affinities occur. MT1 assemblage is very similar to assemblages previously known in the Eastern Subbetic as well as in other areas of the Mediterranean Province. In the Perona Unit the Mediterranean affinity of the assemblages is not so evident. P1 Assemblage consists of widely distributed taxa, lacking in the most characteristic elements of the Mediterranean Province which, however, are present in neighbouring Betic areas. P2 Assemblage belongs to the Spanish Province that develops in Western Tethys after the Early Toarcian Mass Extinction Event. The occurrence in this assemblage of Prionorhynchia aff. msougari Rousselle, until now only found in North Africa, indicates a closer connection of the Perona Unit with the African paleomargin of the Tethys than with the South Iberian paleomargin. The paleobiogeographical data suggest a more southern and marginal (close to epicontinental areas) position of the Perona Unit than the Morrón de Totana Unit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to evaluate taxonomic and environmental control on the preservation pattern of brachiopod accumulations, sedimentologic and taphonomic data have been integrated with those inferred from the structure of brachiopod accumulations from the easternmost Lower Jurassic Subbetic deposits in Spain. Two brachiopod communities (Praesphaeroidothyris and Securina communities) were distinguished showing a mainly free-lying way of life in soft-bottom habitats. Three taphofacies are discriminated based on proportion of disarticulation, fragmentation, packing, and shell filling. Taphofacies 1 is represented by thinly fragmented, dispersed brachiopod shells in wackestone beds. Taphofacies 2 is spatially restricted to small lenses where shells are poorly fragmented, rarely disarticulated, usually void filled, and highly packed. Taphofacies 3 is represented by mud or cement filled, loosely packed, articulated brachiopods forming large pocket-like structures. Temporal and spatial averaging were minimally involved in taphofacies 2 and 3. It is interpreted that patchy preservation implies preservation of primary original patchiness of brachiopod communities on the seafloor. The origin of shell-rich taphofacies (2 and 3) is related to rapid burial due to episodic storm activity, while shell-poor taphofacies 1 records background conditions. The nature and comparative diversity of these taphofacies underscores the importance of rapid burial for shell beds preservation. Differences in preservation between taphofacies 2 and 3 are mainly related to environmental criteria, most importantly storm energy and water depth. In contrast, the taxonomic-specific pattern of the communities is a subordinate element of control, controlling only minor within-taphofacies differences in preservation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Late Sakmarian to early Artinskian (Early Permian) carbonate deposition was widespread in the marine intracratonic rift basins that extended into the interior of Eastern Gondwana from Timor in the north to the northern Perth Basin in the south. These basins spanned about 20° of paleolatitude (approximately 35°S to 55°S). This study describes the type section of the Maubisse Limestone in Timor-Leste, and compares this unit with carbonate sections in the Canning Basin (Nura Nura Member of the Poole Sandstone), the Southern Carnarvon Basin (Callytharra Formation) and the northern Perth Basin (Fossil Cliff Member of the Holmwood Shale). The carbonate units have no glacial influence and formed part of a major depositional cycle that, in the southern basins, overlies glacially influenced strata and lies a short distance below mudstone containing marine fossils and scattered dropstones (perhaps indicative of sea ice). In the south marine conditions became more restricted and were replaced by coal measures at the top of the depositional sequence. In the north, the carbonate deposits are possibly bryozoan–crinoidal mounds; whereas in the southern basins they form laterally continuous relatively thin beds, deposited on a very low-gradient seafloor, at the tops of shale–limestone parasequences that thicken upward in parasequence sets. All marine deposition within the sequence took place under very shallow (inner neritic) conditions, and the limestones have similar grain composition. Bryozoan and crinoidal debris dominate the grain assemblages and brachiopod shell fragments, foraminifera and ostracod valves are usually common. Tubiphytes ranged as far south as the Southern Carnarvon Basin, albeit rarely, but is more common to the north. Gastropod and bivalve shell debris, echinoid spines, solitary rugose corals and trilobite carapace elements are rare. The uniformity of the grain assemblage and the lack of tropical elements such as larger fusulinid foraminifera, colonial corals or dasycladacean algae indicate temperate marine conditions with only a small increase in temperature to the north. The depositional cycle containing the studied carbonate deposits represents a warmer phase than the preceding glacially influenced Asselian to early Sakmarian interval and the subsequent cool phase of the “mid” Artinskian that is followed by significant warming during the late Artinskian–early Kungurian. The timing of cooler and warmer intervals in the west Australian basins seems out-of-phase with the eastern Australian succession, but this may be a problem of chronostratigraphic miscorrelation due to endemic faunas and palynofloras.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

海相碳酸盐岩C、O、Sr 同位素研究是地球化学重要的示踪手段之一。它可以为认识地质历史时期的气候变化,海水原始碳、氧、锶同位素组成,陆地和海洋生物盛衰的长期变化特征,以及碳、氧等元素的外生循环等一些重大的基础学科问题提供重要的依据。研究表明:腕足化石因具有较强抵抗成岩后生作用能力、分布广泛、便于操作等原因被认为是较为理想的研究样品之一。 本论文对来自中国南、北方泥盆纪不同沉积单元腕足化石碳、氧、锶同位素组成进行测试,探讨中国南、北方不同沉积单元腕足化石碳、氧、锶同位素差异。从地球化学角度对我国泥盆纪海平面变化,海洋生物盛衰、陆地风化强度以及构造运动研究进行诠释。 中国泥盆系沉积类型齐全,从南到北,分布着不同构造单元条件下沉积而成的地层。华南泥盆系属地台型稳定沉积类型,四川龙门山地区泥盆系形成于冒地槽构造单元中,而中国北方泥盆系为优地槽活动构造单元的产物。三类构造单元的地壳活动和火山活动不同,生活在其中的腕足壳体碳、氧、锶同位素组成是否存在差异?不同构造单元的海平面变化、海洋生物盛衰以及陆地风化强度是否不同。 研究中通过上述不同沉积单元腕足化石碳、氧、锶同位素组成详细研究,得出以下几点认识: 1) 在腕足化石保存鉴定过程中:微体结构实验显示南、北方剖面腕足化石壳体结构保存完整,有着明显的纤维层和棱柱层结构,但北方剖面腕足化石微裂隙较多,有着不少后期物质充填。在阴极灯照射下,南方剖面腕足化石基本不发光,仅因少量裂隙中后期物质充填有着微弱发光现象存在。北方剖面腕足化石基本上都有着轻微发光现象,尤其内蒙古地区腕足化石。微量元素Fe、Mn、Sr 含量及其Mn/Sr 值表明南、北方剖面腕足化石绝大多数符合腕足保存完好的标准。表明:南方剖面腕足化石保存完好,可以用于的碳、氧、锶同位素组成研究。北方剖面腕足化石保存程度较差,其同位素信息可能遭受成岩蚀变作用的影响,特别是容易遭受蚀变影响的氧同位素组成。 2) 成岩后生作用总是导致碳酸盐岩全岩样品中碳、氧、锶同位素组成发生变化,无法保存原始的同位素信息。腕足化石同碳酸盐岩全岩碳、氧、锶同位素对比表明:碳酸盐岩全岩样品中碳、氧同位素组成都低于腕足化石样品中同位素组成,锶同位素组成正好相反,但在不涉及定量化研究的前提下,碳、锶同位素基本上可以代表着地质历史时期碳、锶同位素变化趋势。也即是说可以利用碳酸盐岩全岩样品进行碳、锶同位素演化趋势研究。至于碳酸盐岩全岩样品中氧同位素组成,低于腕足化石氧同位素组成达 -2‰~-3‰。在目前常用于氧同位素古温度的研究中差异太大。因此,建议不要利用碳酸盐岩全岩样品中氧同位素组成进行古温度研究。 3) 碳同位素组成变化可以指示有机碳的埋藏情况。中国南、北方剖面腕足化石碳同位素研究表明:腕足化石中碳同位素组成基本上在 -2‰ ~ 4‰之间变化,北方剖面较低,南方剖面较高。其碳同位素Locfit 演化对比显示:北方剖面碳同位素演化同华南以及四川龙门山剖面中碳同位素演化有着许多相似之处,表明北方海域有机碳埋藏情况同南方海域有机碳埋藏情形基本一致。分析表明:四川龙门山以及华南剖面泥盆纪时期有着三次有机碳高速埋藏时期,可能受海平面变化以及与之有关的生物繁盛状况共同控制。至于北方剖面碳同位素组成相对较低,一方面可能由于腕足化石保存方面的原因,在成岩蚀变作用影响下北方剖面腕足碳同位素组成较低。另一方面,北方地区较多的火山活动,释放大量含有较多12C 的CO2,融入海水发生同位素交换,导致北方地区碳同位素组成较低。 4) 由于北方剖面存在遭受成岩蚀变作用影响的可能,北方剖面腕足化石壳体氧同位素平均组成(-11.75‰ ~ -21.13‰)明显低于四川龙门山剖面(-5.14‰ ~-7.20‰)、华南剖面(-4.35‰ ~ -10.31‰)氧同位素平均组成,无法对水岩反应控制海洋中氧同位素组成给出肯定的答案。但腕足化石保存完好的四川龙门山剖面和华南剖面氧同位素组成(氧同位素素组成埃姆斯阶为-7.20‰、-7.58‰;吉维特阶-5.62‰、-4.60‰;氟拉斯阶-5.18‰、-4.35‰)显示:优地槽沉积单元的龙门山海域同稳定地台沉积单元的华南海域氧同位素一致,甚至较低,表明水岩反应根本无法控制海洋中氧同位素组成。 5) 四川龙门山剖面下泥盆统埃姆斯阶氧同位素组成为 -9.9‰~-4.5‰,明显低于世界上其他地区同时期腕足化石的氧同位素组成,其差异达 -3‰~-4‰。微量元素Fe、Mn 的演化趋势以及氧同位素演化趋势显示:龙门山海域在埃姆斯阶时期同广阔海域之间海水交流不畅通,其氧同位素组成受淡水河流注入的影响。根据氧同位素古温度计估算(假定古海水δ18O 值为 -3‰SMOW),姆斯阶时期温度高达52℃,远远超过生物所能生存的极限,印证龙门山海域埃姆斯阶氧同位素组成受淡水河流注入的影响。艾菲尔阶~氟拉斯阶,龙门山海域的温度为21℃ ~33℃,表明龙门山海域为典型的低纬地区热带气候。 6) 早泥盆纪时期,锶同位素比值较高,显示风化作用较为强烈;可能是由于加里东造山作用的影响,大量陆地的暴露,促进风化作用的进行。其后,锶同位素组成逐渐降低指示风化作用变弱。锶同位素降低可能由于海底扩展运动造成幔源锶的增加,同时引起海平面上升,引起陆地风化面积的减少,导致风化作用的减弱。幔源锶增加和陆源锶的减少,造成锶同位素比值的不断下降。早泥盆世晚期-中泥盆世,锶同位素组成显示风化作用(强度较低)和构造运动稳定。可能原因为在海平面较高时海侵-海退幅度较小,幔源锶和陆源锶之间达到均衡。中泥盆世后期,锶同位素组成显示:风化作用程度较强。可能由于该时期温度的缓慢上升,导致风化作用加强,陆源锶输入增多引起的。 7) 不同沉积单元腕足化石碳、氧、锶同位素对比表明:局部的区域环境对碳、氧、锶同位素有影响。在考虑利用不同剖面进行地质历史时期某时段碳、氧、锶同位素数据叠加构建完整同位素演化曲线时;对于碳同位素,相同沉积单元条件下,辨别出长时间变化和局部影响时可以应用于同位素演化曲线的构建。而不同沉积单元的碳同位素组成存在差异,不能应用于碳同位素曲线的构建。不同沉积单元氧同位素组成存在较大差异,相同沉积单元的氧同位素组成同样也存在较大差别,表明局部环境对氧同位素组成影响较大,氧同位素曲线的构建最好避免多个剖面的叠加。锶同位素比值,不同沉积单元在长期演化趋势上基本一致,在排除局部环境因素的影响下可以进行多剖面锶同位素演化曲线的构建。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A comprehensive elemental, isotopic and microstructural analyses was undertaken of brachiopod calcites from the Hamilton Group (Middle Devonian), Clinton Group (Middle Silurian) and Middle to Upper Ordovician strata of Ontario and New York State. The majority of specimens were microstructurally and chemically preserved in a pristine state, although a number of specimens show some degree of post-depositional alteration. Brachiopod calcites from the Hamilton and Clinton Groups were altered by marine derived waters whereas Trenton Group (Middle Ordovician) brachiopods altered in meteorically derived fluids. Analysis of the elemental and isotopic compositions of pristine Hamilton Group brachiopods indicates there are several chemical relationships inherent to brachiopod calcite. Taxonomic differentiation of Mg, Sr and Na contents was evident in three co-occuring species from the Hamilton Group. Mean Mg contents of pristine brachiopods were respectively Athyris spiriferoides (1309ppm), Mucrospirifer mucronatus (1035ppm) and Mediospirifer audacula (789ppm). Similarly, taxonomic differentiation of shell calcite compositions was observed in co-occuring brachiopods from the Clinton Group (Middle Silurian) and the Trenton Group (Middle Ordovician). The taxonomic control of elemental regulation into shell calcite is probably related to the slightly different physiological systems and secretory mechanisms. A relationship was observed in Hamilton Group species between the depth of respective brachiopod communities and their Mg, Sr and Na contents. These elements were depleted in the shell calcites of deeper brachiopods compared to their counterparts in shallower reaches. Apparently shell calcite elemental composition is related to environmental conditions of the depositional setting, which may have controlled the secretory regime, mineral morphology of shell calcite and precipitation rates of each species. Despite the change in Mg, Sr and Na contents between beds and formations in response to environmental conditions, the taxonomic differentiation of shell calcite composition is maintained. Thus, it may be possible to predict relative depth changes in paleoenvironmental reconstructions using brachiopod calcite. This relationship of brachiopod chemistry to depth was also tested within a transgressiveregressive (T-R) cycle in the Rochester Shale Formation (Middle Silurian). Decreasing Mg, Sr and Na contents were observed in the transition from the shallow carbonates of the Irondequoit Formation to the deeper shales of the lowest 2 m of Rochester Shale. However, no isotopic and elemental trends were observed within the entire T-R cycle which suggests that either the water conditions did not change significantly or that the cycle is illusory. A similar relationship was observed between the Fe and Mn chemistries of shell calcite and redox/paleo-oxygen conditions. Hamilton Group brachiopods analysed from deeper areas of the shelf are enriched in Mn and Fe relative to those from shallow zones. The presence of black shales and dysaerobic faunas, during deposition of the Hamilton Group, suggests that the waters of the northern Appalachian Basin were stratified. The deeper brachiopods were marginally positioned above an oxycline and their shell calcites reflect periodic incursions of oxygen depleted water. Furthermore, analysis of Dalmanella from the black shales of the Collingwood Shale (Upper Ordovician) in comparison to those from the carbonates of the Verulam Formation (Middle Ordovician) confirm the relationship of Fe and Mn contents to periodic but not permanent incursions of low oxygen waters. The isotopic compositions of brachiopod calcite found in Hamilton Group (813C; +2.5% 0 to +5.5% 0; 8180 -2.50/00 to -4.00/00) and Clinton Group (813C; +4.00/00 to +6.0; 8180; -1.8% 0 to -3.60/ 00) are heavier than previously reported. Uncorrected paleotemperatures (assuming normal salinity, 0% 0 SMOW and no fractionation effects) derived from these isotopic values suggest that the Clinton sea temperature (Middle Silurian) ranged from 18°C to 28°C and Hamilton seas (Middle Devonian) ranged between 24°C and 29°C. In addition, the isotopic variation of brachiopod shell calcite is significant and is related to environmental conditions. Within a single time-correlative shell bed (the Demissa Bed; Hamilton Group) a positive isotopic shift of 2-2.5% 0 in 013C compositions and a positive shift of 1.0-1.50/00 in 0180 composition of shell calcite is observed, corresponding with a deepening of brachiopod habitats toward the axis of the Appalachian Basin. Moroever, a faunal succession from deeper Ambocoelia dominated brachiopod association to a shallow Tropidoleptus dominated assocation is reflected by isotopic shifts of 1.0-1.50/00. Although, other studies have emphasized the significance of ±20/oo shifts in brachiopod isotopic compositions, the recognition of isotopic variability in brachiopod calcite within single beds and within depositional settings such as the Appalachian Basin has important implications for the interpretation of secular isotopic trends. A significant proportion of the variation observed isotopic distribution during the Paleozoic is related to environmental conditions within the depositional setting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Owing to the fact that low-Mg calcite fossil shells are so important in paleoceanographic research, 249 brachiopod, cement and matrix specimens from two neighboring localities (Jemez Springs and Battleship Rock), of the Upper Pennsylvanian Madera Formation were analyzed. Of which, about 86% of the Madera brachiopods are preserved in their pristine mineralogy, microstructure and geochemistry. Cement and matrix samples, in contrast, have been subjected to complete but variable post-deposition~1 alteration. It is confirmed that the stable isotope data of brachiopods are much better than that of matrix material in defining depositional parameters. Because there is no uniform or constant relationship between the two data bases (e.g., from 0.1 to 3.0%0 for 0180 and from 0.2 to 6.7%0 for 013C in this study), it is not possible to make corrections for the matrix data. Regarding the two stratigraphic sections, elemental and petrographic analyses suggest that Jemez Springs is closer to Penasco Uplift than Battleship Rock. Seawater at Jemez Springs is more aerobic, and the water chemistry is more influenced by continental sources than that at Battleship Rock. In addition, there is a relatively stronger dolomitization in the mid-section of the Battleship Rock. Results further suggest that no significant biogenic fractionation or vital effects occurred during their shell secretion, suggesting that the Madera brachiopods incorporated oxygen and carbon isotopes in equilibrium with the ambient seawater. This conclusion is not only drawn from the temporal and spatial analyses, but also supported by brachiopod inter-generic comparison (Composita and Neospirifer) and statistical analysis ( t-test).