527 resultados para basolateral amygdala


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The amygdala has been studied extensively for its critical role in associative fear conditioning in animals and humans. Noxious stimuli, such as those used for fear conditioning, are most effective in eliciting behavioral responses and amygdala activation when experienced in an unpredictable manner. Here, we show, using a translational approach in mice and humans, that unpredictability per se without interaction with motivational information is sufficient to induce sustained neural activity in the amygdala and to elicit anxiety-like behavior. Exposing mice to mere temporal unpredictability within a time series of neutral sound pulses in an otherwise neutral sensory environment increased expression of the immediate-early gene c-fos and prevented rapid habituation of single neuron activity in the basolateral amygdala. At the behavioral level, unpredictable, but not predictable, auditory stimulation induced avoidance and anxiety-like behavior. In humans, functional magnetic resonance imaging revealed that temporal unpredictably causes sustained neural activity in amygdala and anxiety-like behavior as quantified by enhanced attention toward emotional faces. Our findings show that unpredictability per se is an important feature of the sensory environment influencing habituation of neuronal activity in amygdala and emotional behavior and indicate that regulation of amygdala habituation represents an evolutionary-conserved mechanism for adapting behavior in anticipation of temporally unpredictable events.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pyramidal neurons in the lateral amygdala discharge trains of action potentials that show marked spike frequency adaptation, which is primarily mediated by activation of a slow calcium-activated potassium current. We show here that these neurons also express an alpha-dendrotoxin- and tityustoxin-Kalpha-sensitive voltage-dependent potassium current that plays a key role in the control of spike discharge frequency. This current is selectively targeted to the primary apical dendrite of these neurons. Activation of mu-opioid receptors by application of morphine or D-Ala(2)-N-Me-Phe(4)-Glycol(5)-enkephalin (DAMGO) potentiates spike frequency adaptation by enhancing the alpha-dendrotoxin-sensitive potassium current. The effects of mu-opioid agonists on spike frequency adaptation were blocked by inhibiting G-proteins with N-ethylmaleimide (NEM) and by blocking phospholipase A(2). Application of arachidonic acid mimicked the actions of DAMGO or morphine. These results show that mu-opioid receptor activation enhances spike frequency adaptation in lateral amygdala neurons by modulating a voltage-dependent potassium channel containing Kv1.2 subunits, through activation of the phospholipase A(2)-arachidonic acid-lipoxygenases cascade.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Alcohol dependence is a debilitating disorder with current therapies displaying limited efficacy and/or compliance. Consequently, there is a critical need for improved pharmacotherapeutic strategies to manage alcohol use disorders (AUDs). Previous studies have shown that the development of alcohol dependence involves repeated cycles of binge-like ethanol intake and abstinence. Therefore, we used a model of binge-ethanol consumption (drinking-in-the-dark) in mice to test the effects of compounds known to modify the activity of neurotransmitters implicated in alcohol addiction. From this, we have identified the FDA-approved antihypertensive drug pindolol, as a potential candidate for the management of AUDs. We show that the efficacy of pindolol to reduce ethanol consumption is enhanced following long-term (12-weeks) binge-ethanol intake, compared to short-term (4-weeks) intake. Furthermore, pindolol had no effect on locomotor activity or consumption of the natural reward sucrose. Because pindolol acts as a dual beta-adrenergic antagonist and 5-HT1A/1B partial agonist, we examined its effect on spontaneous synaptic activity in the basolateral amygdala (BLA), a brain region densely innervated by serotonin- and norepinephrine-containing fibres. Pindolol increased spontaneous excitatory post-synaptic current frequency in BLA principal neurons from long-term ethanol consuming mice but not naïve mice. Additionally, this effect was blocked by the 5-HT1A/1B receptor antagonist methiothepin, suggesting that altered serotonergic activity in the BLA may contribute to the efficacy of pindolol to reduce ethanol intake following long-term exposure. Although further mechanistic investigations are required, this study demonstrates the potential of pindolol as a new treatment option for AUDs that can be fast-tracked into human clinical studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Drug-associated cue-induced relapse to drug seeking causes most difficulties of therapy for drug addiction. Addicts are exposed to two forms of environmental stimuli during drug-taking: contextual stimuli (e.g. a house in which the drug is consumed) and discrete stimuli (DS, e.g. a crack pipe or a syringe for drug). These stimuli become contextual cues and discrete cues, respectively. The incentive value of contextual cues plays a great role in opiates relapse. Compared with drug self-administration model, conditioned place preference (CPP) reflects the approach behavior for drug cues, not concerned with acquisition of operant behaviors. The present study aimed to investigate the role of basolateral amygdala (BLA) and hippocampus in the effect of opiates-related contextual cues using CPP model. Establishing DS-dependent or contextual cues-dependent CPP, the effect of BLA or hippocampus inactivation prior to training phase on acquisition of contextual cues-opiates association was evaluated. Inactivation prior to test phase was used to evaluate roles of BLA and hippocampus in expression of contextual cues-dependent morphine CPP. The main results were as follows: Inactivation of BLA or dorsal hippocampus selectively impaired acquisition of contextual cue-dependent CPP, but inactivation of ventral hippocampus had no impact on acquisition of either DS-dependent or contextual cue-dependent morphine CPP. Inactivation of BLA selectively inhibited expression of contextual cue-depended CPP. Inactivation of ventral hippocampus inhibited expression of both DS-dependent and contextual cue-dependent morphine CPP. These results suggest that BLA and dorsal hippocampus contribute to contextual cue association with opiates but not DS-opiates association. BLA and ventral hippocampus play important roles in incentive value of contextual cues. The present study provides more information for the neurological substrates underlying contextual cues associated with opiates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is a paucity of studies comparing social buffering in adolescents and adults, despite their marked differences in social behaviour. I investigated whether greater effects of social buffering on plasma corticosterone concentrations and expression of Zif268 in neural regions after an acute stressor would be found in adolescent compared with adult rats. Samples were obtained before and after one hour of isolation stress and after either one or three hours of recovery back in the colony with either a familiar or unfamiliar cage partner. Adolescent and adult rats did not differ in plasma concentrations of corticosterone at any time point. Corticosterone concentrations were higher after one hour isolation than at baseline (p < 0.001), and rats with a familiar partner during the recovery phase had lower corticosterone concentrations than did rats with an unfamiliar partner (p = 0.02). Zif268 immunoreactive cell counts were higher in the arcuate nucleus in both age groups after isolation (p = 0.007) and higher in the paraventricular nucleus of adolescents compared with adults during the recovery phase irrespective of partner familiarity. There was a significant decrease in immunoreactive cell counts after one hour isolation compared to baseline in the basolateral amygdala, central nucleus of the amygdala, and in the pyramidal layer of the hippocampus (all p < 0.05). An effect of partner familiarity on Zif268 immunoreactive cell counts was found in the granule layer of the dentate gyrus irrespective of age (higher in those with a familiar partner, p = 0.03) and in the medial prefrontal cortex in adolescents (higher with an unfamiliar partner, p = 0.02). Overall, the acute stress and partner familiarity produced a similar pattern of results in adolescents and adults, with both age groups sensitive to the social context.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La plasticité synaptique est une propriété indispensable à l’acquisition de la mémoire chez toutes les espèces étudiées, des invertébrés aux primates. La formation d’une mémoire débute par une phase de plasticité qui inclut une restructuration synaptique ; ensuite elle se poursuit par la consolidation de ces modifications, contribuant à la mémoire à long terme. Certaines mémoires redeviennent malléables lorsqu’elles sont rappelées. La trace mnésique entre alors dans une nouvelle de phase de plasticité, au cours de laquelle certaines composantes de la mémoire peuvent être mises à jour, puis reconsolidées. L’objectif de la présente thèse est d’étudier les mécanismes cellulaires et moléculaires qui sont activés lors du rappel d’une mémoire. Nous avons utilisé un modèle de conditionnement Pavlovien, combiné à l’administration d’agents pharmacologiques et à l’analyse quantitative de marqueurs de plasticité synaptique, afin d’étudier la dynamique de la mémoire de peur auditive chez des rats Sprague Dawley. La circuiterie neuronale et les mécanismes associatifs impliqués dans la neurobiologie de cette mémoire sont bien caractérisés, en particulier le rôle des récepteurs glutamatergiques de type NMDA et AMPA dans la plasticité synaptique et la consolidation. Nos résultats démontrent que le retour de la trace mnésique à un état de labilité nécessite l’activation des récepteurs NMDA dans l’amygdale baso-latérale à l’instant même du rappel, alors que les récepteurs AMPA sont requis pour l’expression comportementale de la réponse de peur conditionnée. D’autre part, les résultats identifient le rappel comme une phase bien plus dynamique que présumée, et suggèrent que l’expression de la peur conditionnée mette en jeu la régulation du trafic des récepteurs AMPA par les récepteurs NMDA. Le présent travail espère contribuer à la compréhension de la neurobiologie fondamentale de la mémoire. De plus, il propose une intégration des résultats aux modèles animaux d’étude des troubles psychologiques conséquents aux mémoires traumatiques chez l’humain, tels que les phobies et les syndromes de stress post-traumatiques.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dorsal premammillary nucleus (PMd) has a critical role on the expression of defensive responses to predator odor. Anatomical evidence suggests that the PMd should also modulate memory processing through a projecting branch to the anterior thalamus. By using a pharmacological blockade of the PMd with the NMDA-receptor antagonist 2-amino-5-phosphonopentanoic acid (AP5), we were able to confirm its role in the expression of unconditioned defensive responses, and further revealed that the nucleus is also involved in influencing associative mechanisms linking predatory threats to the related context. We have also tested whether olfactory fear conditioning, using coffee odor as CS, would be useful to model predator odor. Similar to cat odor, shock-paired coffee odor produced robust defensive behavior during exposure to the odor and to the associated context. Shock-paired coffee odor also up-regulated Fos expression in the PMd, and, as with cat odor, we showed that this nucleus is involved in the conditioned defensive responses to the shock-paired coffee odor and the contextual responses to the associated environment. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The amygdala plays a critical role in determining the emotional significance of sensory stimuli and the production of fear-related responses. Large amygdalar lesions have been shown to practically abolish innate defensiveness to a predator; however, it is not clear how the different amygdalar systems participate in the defensive response to a live predator. Our first aim was to provide a comprehensive analysis of the amygdalar activation pattern during exposure to a live cat and to a predator-associated context. Accordingly, exposure to a live predator up-regulated Fos expression in the medial amygdalar nucleus (MEA) and in the lateral and posterior basomedial nuclei, the former responding to predator-related pheromonal information and the latter two nuclei likely to integrate a wider array of predatory sensory information, ranging from olfactory to non-olfactory ones, such as visual and auditory sensory inputs. Next, we tested how the amygdalar nuclei most responsive to predator exposure (i.e. the medial, posterior basomedial and lateral amygdalar nuclei) and the central amygdalar nucleus (CEA) influence both unconditioned and contextual conditioned anti-predatory defensive behavior. Medial amygdalar nucleus lesions practically abolished defensive responses during cat exposure, whereas lesions of the posterior basomedial or lateral amygdalar nuclei reduced freezing and increased risk assessment displays (i.e. crouch sniff and stretch postures), a pattern of responses compatible with decreased defensiveness to predator stimuli. Moreover, the present findings suggest a role for the posterior basomedial and lateral amygdalar nuclei in the conditioning responses to a predator-related context. We have further shown that the CEA does not seem to be involved in either unconditioned or contextual conditioned anti-predatory responses. Overall, the present results help to clarify the amygdalar systems involved in processing predator-related sensory stimuli and how they influence the expression of unconditioned and contextual conditioned anti-predatory responses. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Alcoholism is a chronic disorder characterized by the appearance of a withdrawal syndrome following the abrupt cessation of alcohol intake that includes symptoms of physical and emotional disturbances, anxiety being the most prevalent symptom. In humans, it was shown that anxiety may increase the probability of relapse. In laboratory animals, however, the use of anxiety to predict alcohol preference has remained difficult. Excitatory amino acids as glutamate have been implicated in alcohol hangover and may be responsible for the seizures and anxiety observed during withdrawal. The dorsal periaqueductal gray (DPAG) is a midbrain region critical for the modulation/expression of anxiety- and fear-related behaviors and the propagation of seizures induced by alcohol withdrawal, the glutamate neurotransmission being one of the most affected. The present study was designed to evaluate whether low- (LA) and high-anxiety rats (HA), tested during the alcohol hangover phase, in which anxiety is the most prevalent symptom, are more sensitive to the reinforcing effects of alcohol when tested in a voluntary alcohol drinking procedure. Additionally, we were interested in investigating the main effects of reducing the excitatory tonus of the dorsal midbrain, after the blockade of the ionotropic glutamate receptors into the DPAG, on the voluntary alcohol intake of HA and LA motivated rats that were made previously experienced with the free operant response of alcohol drinking. For this purpose, we used local infusions of the N-metil D-Aspartato (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-kainate receptors antagonist DL-2-Amino-7-phosphonoheptanoic acid - DL-AP7 (10 nmol/0.2 mu l) and L-glutamic acid diethyl ester - GDEE (160 nmol/0.2 mu l) respectively. Alcohol intoxication was produced by 10 daily bolus intraperitonial (IP) injections of alcohol (2.0 g/kg). Peak-blood alcohol levels were determined by gas-chromatography analysis in order to assess blood-alcohol content. Unconditioned and conditioned anxiety-like behavior was assessed by the use of the fear-potentiated startle procedure (FPS). Data collected showed that anxiety and alcohol drinking in HA animals are positively correlated in animals that were made previously familiarized with the anxiolytic effects of alcohol. In addition, anxiety-like behavior induced during alcohol hangover seems to be an effect of changes in glutamatergic neurotransmission into DPAG possibly involving AMPA/kainate and NMDA receptors, among others. (C) 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The extent to which the hypothalamic-pituitary-adrenal axis is activated by short-term and long-term consequences of stress is still open to investigation. This study aimed to determine (i) the correlation between plasma corticosterone and exploratory behavior exhibited by rats subjected to the elevated plus maze (EPM) following different periods of social isolation, (ii) the effects of the corticosterone synthesis blocker, metyrapone, on the behavioral consequences of isolation, and (iii) whether corticosterone produces its effects through an action on the anterior cingulate cortex, area 1 (Cg1). Rats were subjected to 30-min, 2-h, 24-h, or 7-day isolation periods before EPM exposure and plasma corticosterone assessments. Isolation for longer periods of time produced greater anxiogenic-like effects on the EPM. However, stretched attend posture (SAP) and plasma corticosterone concentrations were increased significantly after 30 min of isolation. Among all of the behavioral categories measured in the EPM, only SAP positively correlated with plasma corticosterone. Metyrapone injected prior to the 24 h isolation period reversed the anxiogenic effects of isolation. Moreover, corticosterone injected into the Cg1 produced a selective increase in SAP. These findings indicate that risk assessment behavior induced by the action of corticosterone on Cg1 neurons initiates a cascade of defensive responses during exposure to stressors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is already known that progressive degeneration of cholinergic neurons in brain areas such as the hippocampus and the cortex leads to memory deficits, as observed in Alzheimer's disease. This work verified the effects of the infusion of amyloid-beta (A beta) peptide associated to an attentional rehearsal on the density of alpha 7 nicotinic cholinergic receptor (nAChR) in the brain of male Wistar rats. Animals received intracerebroventricular infusion of A beta or vehicle (control - C) and their attention was stimulated weekly (Stimulated A beta group: S-A beta and Stimulated Control group: SC) or not (Non-Stimulated A beta group: N-SA beta and Non-Stimulated Control group: N-SC), using an active avoidance apparatus. Conditioned avoidance responses (CAR) were registered. Chronic infusion of A beta caused a 37% reduction in CAR for N-SA beta. In S-A beta, this reduction was not observed. At the end, brains were extracted and autoradiography for alpha 7 nAChR was conducted using [I-125]-alpha-bungarotoxin. There was an increase in alpha 7 density in hippocampus, cortex and amygdala of SA beta animals, together with the memory preservation. In recent findings from our lab using mice infused with A beta and the alpha 7 antagonist methyllycaconitine, and stimulated weekly in the same apparatus, it was observed that memory maintenance was abolished. So, the increase in alpha 7 density in brain areas related to memory might be related to a participation of this receptor in the long-lasting change in synaptic plasticity, which is important to improve and maintain memory consolidation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fluoxetine (FLX) is commonly used to treat anxiety and depressive disorders in pregnant women. Since FLX crosses the placenta and is excreted in milk, maternal treatment with this antidepressant may expose the fetus and neonate to increased levels of serotonin (5-HT). Long-term behavioral abnormalities have been reported in rodents exposed to higher levels of 5-HT during neurodevelopment. In this study we evaluated if maternal exposure to FLX during pregnancy and lactation would result in behavioral and/or stress response disruption in adolescent and adult rats. Our results indicate that exposure to FLX influenced restraint stress-induced Fos expression in the amygdala in a gender and age-specific manner. In male animals, a decreased expression was observed in the basolateral amygdala at adolescence and adulthood; whereas at adulthood, a decrease was also observed in the medial amygdala. A lack of FLX exposure effect was observed in females and also in the paraventricular nucleus of both genders. Regarding the behavioral evaluation, FLX exposure did not induce anhedonia in the sucrose preference test but decreased the latency to feed of both male and female adolescent rats evaluated in the novelty-suppressed feeding test. In conclusion, FLX exposure during pregnancy and lactation decreases acute amygdalar stress response to a psychological stressor in males (adolescents and adults) as well as influences the behavior of adolescents (males and females) in a model that evaluates anxiety and/or depressive-like behavior. Even though FLX seems to be a developmental neurotoxicant, the translation of these findings to human safe assessment remains to be determined since it is recognized that not treating a pregnant or lactating woman may also impact negatively the development of the descendants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The conditioning of cocaine's subjective actions with environmental stimuli may be a critical factor in long-lasting relapse risk associated with cocaine addiction. To study the significance of learning factors in persistent addictive behavior as well as the neurobiological basis of this phenomenon, rats were trained to associate discriminative stimuli (SD) with the availability of i.v. cocaine vs. nonrewarding saline solution, and then placed on extinction conditions during which the i.v. solutions and SDs were withheld. The effects of reexposure to the SD on the recovery of responding at the previously cocaine-paired lever and on Fos protein expression then were determined in two groups. One group was tested immediately after extinction, whereas rats in the second group were confined to their home cages for an additional 4 months before testing. In both groups, the cocaine SD, but not the non-reward SD, elicited strong recovery of responding and increased Fos immunoreactivity in the basolateral amygdala and medial prefrontal cortex (areas Cg1/Cg3). The response reinstatement and Fos expression induced by the cocaine SD were both reversed by selective dopamine D1 receptor antagonists. The undiminished efficacy of the cocaine SD to elicit drug-seeking behavior after 4 months of abstinence parallels the long-lasting nature of conditioned cue reactivity and cue-induced cocaine craving in humans, and confirms a significant role of learning factors in the long-lasting addictive potential of cocaine. Moreover, the results implicate D1-dependent neural mechanisms within the medial prefrontal cortex and basolateral amygdala as substrates for cocaine-seeking behavior elicited by cocaine-predictive environmental stimuli.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Evidence from appetitive Pavlovian and instrumental conditioning studies suggest that the amygdala is involved in modulation of responses correlated with motivational states, and therefore, to the modulation of processes probably underlying reinforcement omission effects. The present study aimed to clarify whether or not the mechanisms related to reinforcement omission effects of different magnitudes depend on basolateral complex and central nucleus of amygdala. Rats were trained on a fixed-interval 12 s with limited hold 6 s signaled schedule in which correct responses were always followed by one of two reinforcement magnitudes. Bilateral lesions of the basolateral complex and central nucleus were made after acquisition of stable performance. After postoperative recovery, the training was changed from 100% to 50% reinforcement schedules. The results showed that lesions of the basolateral complex and central nucleus did not eliminate or reduce, but interfere with reinforcement omission effects. The response from rats of both the basolateral complex and central nucleus lesioned group was higher relative to that of the rats of their respective sham-lesioned groups after reinforcement omission. Thus, the lesioned rats were more sensitive to the omission effect. Moreover, the basolateral complex lesions prevented the magnitude effect on reinforcement omission effects. Basolateral complex lesioned rats showed no differential performance following omission of larger and smaller reinforcement magnitude. Thus, the basolateral complex is involved in incentive processes relative to omission of different reinforcement magnitudes. Therefore, it is possible that reinforcement omission effects are modulated by brain circuitry which involves amygdala. (C) 2012 Elsevier B.V. All rights reserved.