990 resultados para aromatic molecules
Resumo:
Polycyclic aromatic molecules such as ellipticine intercalate into double-stranded DNA and interfere with physiological functions. In the present study, we evaluate the chemotherapeutic potential of MPTQ on animal models and its mode of action. In order to test the antitumor activity, monohydrochloride of MPTQ was orally administered in mice bearing tumor. Results showed a significant inhibition of tumor growth compared to that of untreated controls. More importantly, mean lifespan of tumor bearing animals treated with MPTQ was significantly higher as compared to that of untreated tumor bearing mice suggesting that the treatment affected viability of cancerous cells, but not of normal cells. Consistent with this, we find that administration of MPTQ to normal mice did not cause any major side effects as observed upon hematological and serum profiling. We also found that MPTQ induces cytotoxicity in cancer cell lines, by activating apoptosis both by intrinsic and extrinsic pathways. Thus, MPTQ could be used as a potential cancer therapeutic agent. (c) 2011 Wiley Periodicals, Inc.
Resumo:
Molecular organization of donor and acceptor chromophores in self-assembled materials is of paramount interest in the field of photovoltaics or mimicry of natural light-harvesting systems. With this in mind, a redox-active porous interpenetrated metal-organic framework (MOF), {Cd(bpdc)(bpNDI)]4.5H(2)ODMF}(n) (1) has been constructed from a mixed chromophoric system. The -oxo-bridged secondary building unit, {Cd-2(-OCO)(2)}, guides the parallel alignment of bpNDI (N,N-di(4-pyridyl)-1,4,5,8-naphthalenediimide) acceptor linkers, which are tethered with bpdc (bpdcH(2)=4,4-biphenyldicarboxylic acid) linkers of another entangled net in the framework, resulting in photochromic behaviour through inter-net electron transfer. Encapsulation of electron-donating aromatic molecules in the electron-deficient channels of 1 leads to a perfect donor-acceptor co-facial organization, resulting in long-lived charge-separated states of bpNDI. Furthermore, 1 and guest encapsulated species are characterised through electrochemical studies for understanding of their redox properties.
Resumo:
Based on scanning tunnelling microscopy and electrochemical measurements, orientation and electrocatalytic function of riboflavin adsorbed on carbon substrates have been described for the first time. Scanning tunnelling micrographs show clearly that tip induction may result in an orientation change of the adsorbed riboflavin molecule on highly oriented pyrolytic graphite from the initially vertical orientation to the stable flat form. The adsorbed riboflavin as an effective mediator can accelerate the reduction of dioxygen which accepts two electrons from the reduced riboflavin to generate hydrogen peroxide. The rate constants of the electrocatalytic reaction in various pH solutions were determined using a rotating disc electrode modified with riboflavin. The pH effect and possible catalytic mechanism are discussed in detail.
Resumo:
The adsorption of cationic surfactant cetylpyridinium bromide (CPB) on a glassy carbon (GC) electrode surface has been studied by spectroelectrochemistry with a long optical path length thin-layer cell (LOPTLC) for the first time. A fine adsorption isotherm of CPB molecules from an aqueous solution containing 0.10 M KBr has been obtained over the range of (1.00-8.00) x 10(-5) M. From theoretical calculation and experimental data, adsorption of CPB on the GC electrode surface shows four distinct orientations and three large orientation transitions. Compared with the ordinary isotherm, the differential isotherm is more characteristic and would be suitable for the study of orientation transitions of organic compounds. With a theoretical treatment of the adsorption isotherm, four orientations of adsorbed CPB on a GC electrode surface coincide with the Frumkin-Langmuir type. From adsorption parameters the Frumkin-Langmuir equations, the adsorption free energy and, therefore, the equilibrium constants of orientation transitions of the CPB molecule can be obtained.
Resumo:
We propose a self consistent polarisable ion tight binding theory for the study of push-pull processes in aromatic molecules. We find that the method quantitatively reproduces ab initio calculations of dipole moments and polarisability. We apply the scheme in a simulation which solves the time dependent Schroedinger equation to follow the relaxation of azulene from the second excited to the ground states. We observe rather spectacular oscillating ring currents which we explain in terms of interference between the HOMO and LUMO states.
Resumo:
Many organic molecules have strong absorption bands which can be accessed by ultraviolet short pulse lasers to produce efficient ionization. This resonant multiphoton ionization scheme has already been exploited as an ionization source in time-of-flight mass spectrometers used for environmental trace analysis. In the present work we quantify the ultimate potential of this technique by measuring absolute ion yields produced from the interaction of 267 nm femtosecond laser pulses with the organic molecules indole and toluene, and gases Xe, N2 and O2. Using multiphoton ionization cross sections extracted from these results, we show that the laser pulse parameters required for real-time detection of aromatic molecules at concentrations of one part per trillion in air and a limit of detection of a few attomoles are achievable with presently available commercial laser systems. The potential applications for the analysis of human breath, blood and tissue samples are discussed.
Resumo:
Le fullerène C60 est une molécule sphérique composée exclusivement d'atomes de carbone. Ce composé possède une surface aromatique convexe homogène et peut s'associer, entre autres, avec des molécules possédant des surfaces aromatiques par des interactions non-covalentes. Le triptycène est une molécule en forme de "Y" qui possède des surfaces aromatiques convexes. Cette molécule possède l'habileté de s'associer avec le C60 par des interactions de type π qui sont amplifiées par la complémentarité des surfaces concaves et convexes impliquées dans les arrangements cristallins. Nous avons synthétisé des dérivés triptycényles portant des groupements fonctionnels aux extrémités des bras de ce noyau de façon à étendre les cavités disponibles pour interagir avec le C60. En effet, nous avons découvert que les atomes de chlore, de brome et d'iode ainsi que les groupements méthyle permettent d'étendre les surfaces disponibles pour interagir avec les fullerènes C60 et C70. Nous avons étudié les associations entre les dérivés triptycényles et les fullerènes par l'analyse des structures cristallographiques résolues par diffraction des rayons-X. De plus, nous avons étudié les associations entre les molécules considérées par l'analyse des surfaces d'Hirshfeld entourant les fullerènes. Découlant de ces études, l'effet d'amplification des atomes de chlore, de brome et d'iode ainsi que les groupements méthyle a été employé pour identifier de nouveaux solvants aptes à solubiliser efficacement le C60.
Resumo:
Le fullerène C60, une molécule sphérique, et le C70, un analogue ellisoïde, sont des composés aromatiques convexes constitués exclusivement d'atomes de carbone. La nature aromatique de la surface de ces cages de carbone rend possible leur association à l'état solide avec d'autres molécules aromatiques de topologie complémentaire. En particulier, l'association des fullerènes avec des composés présentant des motifs concaves aromatiques, via une association de type concave-convexe, est favorable. En effet, les interactions π•••π de type concave-convexe sont amplifiées grâce à la complémentarité topologique des partenaires impliqués. Le centrohexaindane est un hydrocarbure non planaire rigide qui a été synthétisé pour la première fois en 1988 par Kuck et collaborateurs. Cette molécule possède quatre surfaces aromatiques concaves orientées dans une géométrie tétraédrique qui sont susceptibles d'interagir favorablement avec les fullerènes. Nous avons ainsi avec succès cocristallisé le centrohexaindane avec les fullerènes C60 et C70. Puis, nous avons étudié les assemblages à l'état solide entre le centrohexaindane et les fullerènes par l'analyse des structures résolues via diffraction des rayons X. Les surfaces concaves aromatiques du centrohexaindane se sont révélées être propices à une association avec les fullerènes C60 et C70 via des interactions π•••π de type concave-convexe, tel que prévu. En outre, nous avons découvert que les liaisons C-H situées à la périphérie du centrohexaindane prennent part à une multitude de contacts C-H•••π avec les molécules de fullerène. Les échantillons de cocristaux composés de centrohexaindane et de fullerène ont aussi été caractérisés par diffraction de poudre des rayons X et par analyse thermogravimétrique dans le but d'en évaluer l'homogénéité.
Resumo:
Near-infrared spectroscopy can be a workhorse technique for materials analysis in industries such as agriculture, pharmaceuticals, chemicals and polymers. A near-infrared spectrum represents combination bands and overtone bands that are harmonics of absorption frequencies in the mid-infrared. Near-infrared absorption includes a combination-band region immediately adjacent to the mid-infrared and three overtone regions. All four near-infrared regions contain "echoes" of the fundamental mid-infrared absorptions. For example, vibrations in the mid-infrared due to the C-H stretches will produce four distinct bands in each of the overtone and combination regions. As the bands become more removed from the fundamental frequencies they become more widely separated from their neighbors, more broadened and are dramatically reduced in intensity. Because near-infrared bands are much less intense, more of the sample can be used to produce a spectra and with near-infrared, sample preparation activities are greatly reduced or eliminated so more of the sample can be utilized. In addition, long path lengths and the ability to sample through glass in the near-infrared allows samples to be measured in common media such as culture tubes, cuvettes and reaction bottles. This is unlike mid-infrared where very small amounts of a sample produce a strong spectrum; thus sample preparation techniques must be employed to limit the amount of the sample that interacts with the beam. In the present work we describe the successful the fabrication and calibration of a linear high resolution linear spectrometer using tunable diode laser and a 36 m path length cell and meuurement of a highly resolved structure of OH group in methanol in the transition region A v =3. We then analyse the NIR spectrum of certain aromatic molecules and study the substituent effects using local mode theory
Resumo:
The central theme of this research concerns the study of vibrationally excited molecules. We have used the local mode description of such vibrational states, and this -model has now gained general acceptance. A central feature of the model is the Wloealizafion of vibrational energy. A study of these high—energy localized states provides example, becauseof this localization, overtone spectra, which measure the absorption of T vibrational energy, are extremely sensitive to the properties of X-H bonds. We also use -overtone spectra to study the conformation of molecules, i.e., the relative internal orientation of their bonds. The thesis comprises six chapters
Resumo:
Benzene adsorbed on highly acidic sulfated TiO2 (S-TiO2) shows an intriguing resonance Raman (RR) effect, with excitation in the blue-violet region. There are very interesting spectral features: the preferential enhancement of the e(2g) mode (1595 cm(-1)) in relation to the a(1g) mode (ring-breathing mode at 995 cm(-1)) and the appearance of bands at 1565 and 1514 cm(-1). The band at 1565 cm(-1) is probably one of the components of the e(2g) split band, originally a doubly degenerate mode (8a, 8b) in neat benzene, and the band at 1514 cm(-1) is assigned to the 19a mode, an inactive mode in neat benzene. These facts indicate a lowering of symmetry in adsorbed benzene, which may be caused by a strong interaction between S-TiO2 and the benzene molecule with formation of a benzene to Ti (IV) charge transfer (CT) complex or by the formation of a benzene radical cation species. However, the RR spectra of the adsorbed benzene cannot be assigned to the benzene radical cation because the observed wavenumber of the ring-breathing mode does not have the value expected for this species. Moreover, it was found by ESR measurements that the amount of radicals was very low, and so it was concluded that a CT complex is the species that originates the RR spectra. The most favorable intensification of the band at 1595 cm(-1) in the RR spectra of benzene/S-TiO2 at higher excitation energy corroborates this hypothesis, as an absorption band in this energy range, assigned to a CT transition, is observed. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
The aromaticity index is an important tool for the investigation of aromatic molecules. This work consists on new applications of the aromaticity index developed by teacher Caio Lima Firme, so-called D3BIA (density, delocalization, degeneracy-based index of aromaticity). It was investigated its correlation with other well-known aromaticity indexes, such as HOMA (harmonic oscillator model of aromaticity), NICS (nucleus independent chemical shielding), PDI (para-delocalization index), magnetic susceptibility (), and energetic factor in the study of aromaticity of acenes and homoaromatic species based on bisnoradamantanyl cage. The density functional theory (DFT) was used for optimization calculations and for obtaining energetic factors associated with aromaticity and indexes HOMA and NICS. From quantum theory of atoms in molecules (QTAIM) it was obtained the indexes D3BIA, PDI and . For acenes, when the over-mentioned indexes were applied it was observed no correlation except for D3BIA and HOMA (R2=0.752). For bisnoradamantenyl dication and its derivatives, it was obtained a good correlation between D3BIA and NICS. Moreover, it was evaluated solely one of the factors used on D3BIA calculation, the delocalization index uniformity (DIU), so as to investigate its possible influence on stability of chemical species. Then, the DIU was compared with the formation Gibbs free energy of some pairs of carbocations, isomers or not, which each pair had small difference in point group symmetry and no difference among other well-known stability factors. The obtained results indicate that DIU is a new stability factor related to carbocations, that is, the more uniform the electron density delocalization, the more stable the is carbocation. The results of this work validate D3BIA and show its importance on the concept of aromaticity, indicating that it can be understood from degeneracy of atoms belonging the aromatic site, the electronic density in the aromatic site and the degree of uniformity of electron delocalization
Resumo:
The pulsed jet Fourier transform microwave spectroscopy have been applied to several molecular complexes involving H2O, freons, methane, carboxylic acids, and rare gas. The obtained results showcase the suitability of this technique for studying the intermolecular interactions. The rotational spectra of three water adducts of halogenated organic molecules, i.e. chlorotrifluoroethylene, isoflurane and alfa,alfa,alfa,-trifluoroanisole, have been investigated. It has been found that, the halogenation of the partner molecules definitely changes the way in which water will link to the partner molecule. Quadrupole hyperfine structures and/or the tunneling splittings have been observed in the rotational spectra of difluoromethane-dichloromethane, chlorotrifluorometane-fluoromethane, difluoromethane-formaldehyde and trifluoromethane-benzene. These features have been useful to describe their intermolecular interactions (weak hydrogen bonds or halogen bonds), and to size the potential energy surfaces of their internal motions. The rotational spectrum of pyridine-methane pointed out that methane prefers to locate above the ring and link to pyridine through a C-H•••π weak hydrogen bond, rather than the C-H•••n interaction. This behavior, typical of complexes of pyridine with rare gases, suggests classifying CH4, in relation to its ability to form molecular complexes with aromatic molecules, as a pseudo rare gas. The conformational equilibria of three bi-molecules of carboxylic acids, acrylic acid-trifluoroacetic acid, difluoroacetic acid-formic acid and acrylic acid-fluoroacetic acid have been studied. The increase of the hydrogen bond length upon H→D isotopic substitution (Ubbelohde effect) has been deduced from the elongation of the carboxylic carbons C•••C distance. The van der Waals complex tetrahydrofuran-krypton shows that the systematic doubling of the rotational lines has been attributed to the residual pseudo-rotation of tetrahydrofuran in the complex, based on the values of the Coriolis coupling constants, and on the type (mu_b) of the interstate transitions.
Resumo:
Supramolecular DNA assembly blends DNA building blocks with synthetic organic and inorganic molecules giving structural and functional advantages both to the initial self-assembly process and to the final construct. Synthetic molecules can bring a number of additional interactions into DNA nanotechnology. Incorporating extended aromatic molecules as connectors of DNA strands allows folding of these strands through π-π stacking (DNA “foldamers”). In previous work it was shown that short oligopyrenotides (phosphodiester-linked pyrene oligomers) behave as staircase-like foldamers, which cooperatively self-assemble into two-dimensional supramolecular polymers in aqueous medium. Herein, we demonstrate that a 10-mer DNA-sequence modified with 7 pyrene units (see illustration) forms dimensionally-defined supramolecular polymers under thermodynamic conditions in water. We present the self-assembly behavior, morphological studies, and the spectroscopic properties of the investigated DNA-sequences (illustrative AFM picture shown below).
Resumo:
Supramolecular DNA assembly blends DNA building blocks with synthetic organic molecules giving structural and functional advantages. Incorporating extended aromatic molecules as connectors of DNA strands allows folding of these strands through π-π stacking (DNA 'foldamers'). In previous work it was shown that short oligopyrenotides behave as staircase-like foldamers, which cooperatively self-assemble into 2D supramolecular polymers in aqueous medium. Herein, we demonstrate that 10-mer DNA-sequence conjugated with seven pyrene unites forms dimensionally-defined supramolecular polymers under thermodynamic conditions in water. We present the self-assembly behavior, morphologycal studies (AFM and TEM), and the spectroscopic properties (UV/vis, CD) of the investigated pyrene - conjugated DNA-sequence.