968 resultados para advanced glycosylation end-product receptor
Resumo:
The NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome is one of the main sources of interleukin-1β (IL-1β) and is involved in several inflammatory-related pathologies. To date, its relationship with pain has not been studied in depth. The aim of our study was to elucidate the role of NLRP3 inflammasome and IL-1β production on neuropathic pain. Results showed that basal pain sensitivity is unaltered in NLRP3-/- mice as well as responses to formalin test. Spared nerve injury (SNI) surgery induced the development of mechanical allodynia and thermal hyperalgesia in a similar way in both genotypes and did not modify mRNA levels of the NLRP3 inflammasome components in the spinal cord. Intrathecal lipopolysaccharide (LPS) injection increases apoptosis-associated speck like protein (ASC), caspase-1 and IL-1β expression in both wildtype and NLRP3-/- mice. Those data suggest that NLRP3 is not involved in neuropathic pain and also that other sources of IL-1β are implicated in neuroinflammatory responses induced by LPS.
Resumo:
The present study concentrates on the evaluation of the anti-glycation effect of some bioactive substances present in yerba mate (Ilex paraguariensis): 5-caffeoylquinic acid, caffeic acid and a sapogenin (oleanolic acid). Bovine serum albumin and histones were incubated in the presence of methylglyoxal with or without the addition of 5-caffeoylquinic acid, caffeic acid and oleanolic acid. After the incubation period, advanced glycation end product (AGE) fluorescence spectra were performed and protein structural changes were evaluated by Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis. Chlorogenic acid, caffeic acid are the main substances responsible for the anti-glycation effect of mate tea. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
INTRODUCTION Proangiogenic prolyl hydroxylase (PHD) inhibitors represent a novel approach to stimulate tissue regeneration. Diabetes mellitus involves the accumulation of advanced glycation end products (AGEs). Here we evaluated the impact of AGEs on the response of human pulp tissue to the PHD inhibitor L-mimosine (L-MIM) in monolayer cultures of dental pulp-derived cells (DPCs) and tooth slice organ cultures. METHODS In monolayer cultures, DPCs were incubated with L-MIM and AGEs. Viability was assessed based on formazan formation, live-dead staining, annexin V/propidium iodide, and trypan blue exclusion assay. Vascular endothelial growth factor (VEGF), interleukin (IL)-6, and IL-8 production was evaluated by quantitative polymerase chain reaction and immunoassays. Furthermore, expression levels of odontoblast markers were assessed, and alizarin red staining was performed. Tooth slice organ cultures were performed, and VEGF, IL-6, and IL8 levels in their supernatants were measured by immunoassays. Pulp tissue vitality and morphology were assessed by MTT assay and histology. RESULTS In monolayer cultures of DPCs, L-MIM at nontoxic concentrations increased the production of VEGF and IL-8 in the presence of AGEs. Stimulation with L-MIM decreased alkaline phosphatase levels and matrix mineralization also in the presence of AGEs, whereas no significant changes in dentin matrix protein 1 and dentin sialophosphoprotein expression were observed. In tooth slice organ cultures, L-MIM increased VEGF but not IL-6 and IL-8 production in the presence of AGEs. The pulp tissue was vital, and no signs of apoptosis or necrosis were observed. CONCLUSIONS Overall, in the presence of AGEs, L-MIM increases the proangiogenic capacity, but decreases alkaline phosphatase expression and matrix mineralization.
Breakers of advanced glycation end products restore large artery properties in experimental diabetes
Resumo:
Glucose and other reducing sugars react with proteins by a nonenzymatic, posttranslational modification process called nonenzymatic glycation. The formation of advanced glycation end products (AGEs) on connective tissue and matrix components accounts largely for the increase in collagen crosslinking that accompanies normal aging and which occurs at an accelerated rate in diabetes, leading to an increase in arterial stiffness. A new class of AGE crosslink “breakers” reacts with and cleaves these covalent, AGE-derived protein crosslinks. Treatment of rats with streptozotocin-induced diabetes with the AGE-breaker ALT-711 for 1–3 weeks reversed the diabetes-induced increase of large artery stiffness as measured by systemic arterial compliance, aortic impedance, and carotid artery compliance and distensibility. These findings will have considerable implications for the treatment of patients with diabetes-related complications and aging.
Resumo:
The crystal structure of anthranilate synthase (AS) from Serratia marcescens, a mesophilic bacterium, has been solved in the presence of its substrates, chorismate and glutamine, and one product, glutamate, at 1.95 Å, and with its bound feedback inhibitor, tryptophan, at 2.4 Å. In comparison with the AS structure from the hyperthermophile Sulfolobus solfataricus, the S. marcescens structure shows similar subunit structures but a markedly different oligomeric organization. One crystal form of the S. marcescens enzyme displays a bound pyruvate as well as a putative anthranilate (the nitrogen group is ambiguous) in the TrpE subunit. It also confirms the presence of a covalently bound glutamyl thioester intermediate in the TrpG subunit. The tryptophan-bound form reveals that the inhibitor binds at a site distinct from that of the substrate, chorismate. Bound tryptophan appears to prevent chorismate binding by a demonstrable conformational effect, and the structure reveals how occupancy of only one of the two feedback inhibition sites can immobilize the catalytic activity of both TrpE subunits. The presence of effectors in the structure provides a view of the locations of some of the amino acid residues in the active sites. Our findings are discussed in terms of the previously described AS structure of S. solfataricus, mutational data obtained from enteric bacteria, and the enzyme's mechanism of action.
Resumo:
Purpose: RPE lysosomal dysfunction is a major contributor to AMD pathogenesis. Controlled activity of a major class of RPE proteinases, the cathepsins, is crucial in maintaining correct lysosomal function. Advanced glycation end-products (AGEs) accumulate in the Bruch’s membrane (BM) with age, impacting critical RPE functions and in turn, contributing to the development of AMD. The aim of this study was to assess the effect of AGEs on lysosomal function by analysing the expression, processing and activity of the cysteine proteinases cathepsins B, L and S, and the aspartic proteinase cathepsin D. Methods: ARPE-19 cells were cultured on AGE-containing BM mimics (matrigel) for 14 days and compared to untreated substrate. Expression levels and intracellular processing of cathepsins B, D, L and S, were assessed by qPCR and immunoblotting of cell lysates. Lysosomal activity was investigated using multiple activity assays specific to each of the analysed cathepsins. Statistical analysis was performed using the Student’s independent T-test. Results: AGE exposure produced a 36% decrease in cathepsin L activity when compared to non-treated controls (p=0.02, n= 3) although no significant changes were observed in protein expression/processing under these conditions. Both the pro and active forms of cathepsin S decreased by 40% (p=0.04) and 74% (p=0.004), respectively (n=3). In contrast, the active form of the cathepsin D increased by 125% (p=0.005, n= 4). However, no changes were observed in the activity levels of both cathepsins S and D. In addition, cathepsin B expression, processing and activity also remained unaltered following AGE exposure. Conclusions: AGEs accumulation in the extracellular matrix, a phenomenon associated with the natural aging process of the BM, attenuates the expression, intracellular processing and activity of specific lysosomal effectors. Altered enzymatic function may impair important lysosomal processes such as endocytosis, autophagy and phagocytosis of photoreceptor outer segments, each of which may influence the age-related dysfunction of the RPE and subsequently, AMD pathogenesis.
Resumo:
The detection of preclinical heart disease is a new direction in diabetes care. This comment describes the study by Vinereanu and co-workers in this issue of Clinical Science in which tissue Doppler echocardiography has been employed to demonstrate subtle systolic and diastolic dysfunction in Type 11 diabetic patients who had normal global systolic function and were free of coronary artery disease. The aetiology of early ventricular dysfunction in diabetes relates to complex intramyocardial and extramyocardial mechanisms. The initiating event may be due to insulin resistance, and involves abnormal myocardial substrate utilization and uncoupling of mitochondrial oxidative phosphorylation. Dysglycaemia plays an important role via the effects of oxidative stress, protein kinase C activation and advanced glycosylation end-products on inflammatory signalling, collagen metabolism and fibrosis. Extramyocardial mechanisms involve peripheral endothelial dysfunction, arterial stiffening and autonomic neuropathy. The clinical significance of the ventricular abnormalities described is unknown. Confirmation of their prognostic importance for cardiac disease in diabetes would justify routine screening for presymptomatic ventricular dysfunction, as well as clinical trials of novel agents for correcting causal mechanisms. These considerations could also have implications for patients with obesity and the metabolic syndrome.
Resumo:
Recent work has demonstrated that hyperglycemia-induced overproduction of superoxide by the mitochondrial electron-transport chain triggers several pathways of injury [(protein kinase C (PKC), hexosamine and polyol pathway fluxes, advanced glycation end product formation (AGE)] involved in the pathogenesis of diabetic complications by inhibiting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity. Increased oxidative and nitrosative stress activates the nuclear enzyme, poly(ADP-ribose) polymerase-1 (PARP). PARP activation, on one hand, depletes its substrate, NAD+, slowing the rate of glycolysis, electron transport and ATP formation. On the other hand, PARP activation results in inhibition of GAPDH by poly-ADP-ribosylation. These processes result in acute endothelial dysfunction in diabetic blood vessels, which importantly contributes to the development of various diabetic complications. Accordingly, hyperglycemia-induced activation of PKC and AGE formation are prevented by inhibition of PARP activity. Furthermore, inhibition of PARP protects against diabetic cardiovascular dysfunction in rodent models of cardiomyopathy, nephropathy, neuropathy, and retinopathy. PARP activation is also present in microvasculature of human diabetic subjects. The present review focuses on the role of PARP in diabetic complications and emphasizes the therapeutic potential of PARP inhibition in the prevention or reversal of diabetic complications.
Resumo:
Diabetes is a recognized risk factor for cardiovascular diseases and heart failure. Diabetic cardiovascular dysfunction also underscores the development of diabetic retinopathy, nephropathy and neuropathy. Despite the broad availability of antidiabetic therapy, glycemic control still remains a major challenge in the management of diabetic patients. Hyperglycemia triggers formation of advanced glycosylation end products (AGEs), activates protein kinase C, enhances polyol pathway, glucose autoxidation, which coupled with elevated levels of free fatty acids, and leptin have been implicated in increased generation of superoxide anion by mitochondria, NADPH oxidases and xanthine oxidoreductase in diabetic vasculature and myocardium. Superoxide anion interacts with nitric oxide forming the potent toxin peroxynitrite via diffusion limited reaction, which in concert with other oxidants triggers activation of stress kinases, endoplasmic reticulum stress, mitochondrial and poly(ADP-ribose) polymerase 1-dependent cell death, dysregulates autophagy/mitophagy, inactivates key proteins involved in myocardial calcium handling/contractility and antioxidant defense, activates matrix metalloproteinases and redox-dependent pro-inflammatory transcription factors (e.g. nuclear factor kappaB) promoting inflammation, AGEs formation, eventually culminating in myocardial dysfunction, remodeling and heart failure. Understanding the complex interplay of oxidative/nitrosative stress with pro-inflammatory, metabolic and cell death pathways is critical to devise novel targeted therapies for diabetic cardiomyopathy, which will be overviewed in this brief synopsis. This article is part of a Special Issue entitled: Autophagy and protein quality control in cardiometabolic diseases.
Resumo:
Proteomic analysis using electrospray liquid chromatography-mass spectrometry (ESI-LC-MS) has been used to compare the sites of glycation (Amadori adduct formation) and carboxymethylation of RNase and to assess the role of the Amadori adduct in the formation of the advanced glycation end-product (AGE), N-is an element of-(carboxymethyl)lysine (CIVIL). RNase (13.7 mg/mL, 1 mM) was incubated with glucose (0.4 M) at 37 degreesC for 14 days in phosphate buffer (0.2 M, pH 7.4) under air. On the basis of ESI-LC-MS of tryptic peptides, the major sites of glycation of RNase were, in order, K41, K7, K1, and K37. Three of these, in order, K41, K7, and K37 were also the major sites of CIVIL formation. In other experiments, RNase was incubated under anaerobic conditions (1 mM DTPA, N-2 purged) to form Amadori-modified protein, which was then incubated under aerobic conditions to allow AGE formation. Again, the major sites of glycation were, in order, K41, K7, K1, and K37 and the major sites of carboxymethylation were K41, K7, and K37. RNase was also incubated with 1-5 mM glyoxal, substantially more than is formed by autoxidation of glucose under experimental conditions, but there was only trace modification of lysine residues, primarily at K41. We conclude the following: (1) that the primary route to formation of CIVIL is by autoxidation of Amadori adducts on protein, rather than by glyoxal generated on autoxidation of glucose; and (2) that carboxymethylation, like glycation, is a site-specific modification of protein affected by neighboring amino acids and bound ligands, such as phosphate or phosphorylated compounds. Even when the overall extent of protein modification is low, localization of a high proportion of the modifications at a few reactive sites might have important implications for understanding losses in protein functionality in aging and diabetes and also for the design of AGE inhibitors.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)