910 resultados para active and exo-site binding
Resumo:
Mineral compositions of residual peridotites collected at various locations in the Mid-Atlantic Ridge south of the Kane transform (MARK area) are consistent with generally smaller degrees of melting in the mantle near the large offset Kane transform than near the other, small offset, axial discontinuities in the area. We propose that this transform fault effect is due to along-axis variations in the final depth of melting in the subaxial mantle, reflecting the colder thermal regime of the ridge near the Kane transform. Calculations made with a passive mantle flow regime suggest that these along-axis variations in the final depth of melting would not produce the full range of crustal thickness variations observed in the MARK area seismic record. It is therefore likely that the transform fault effect in the MARK area is combined with other mechanisms capable of producing crustal thickness variations, such as along-axis melt migration, the trapping of part of the magma in a cold mantle root beneath the ridge, or active mantle upwelling.
Resumo:
Multiprotein bridging factor 1 (MBF1) is a transcriptional cofactor that bridges between the TATA box-binding protein (TBP) and the Drosophila melanogaster nuclear hormone receptor FTZ-F1 or its silkworm counterpart BmFTZ-F1. A cDNA clone encoding MBF1 was isolated from the silkworm Bombyx mori whose sequence predicts a basic protein consisting of 146 amino acids. Bacterially expressed recombinant MBF1 is functional in interactions with TBP and a positive cofactor MBF2. The recombinant MBF1 also makes a direct contact with FTZ-F1 through the C-terminal region of the FTZ-F1 DNA-binding domain and stimulates the FTZ-F1 binding to its recognition site. The central region of MBF1 (residues 35–113) is essential for the binding of FTZ-F1, MBF2, and TBP. When the recombinant MBF1 was added to a HeLa cell nuclear extract in the presence of MBF2 and FTZ622 bearing the FTZ-F1 DNA-binding domain, it supported selective transcriptional activation of the fushi tarazu gene as natural MBF1 did. Mutations disrupting the binding of FTZ622 to DNA or MBF1, or a MBF2 mutation disrupting the binding to MBF1, all abolished the selective activation of transcription. These results suggest that tethering of the positive cofactor MBF2 to a FTZ-F1-binding site through FTZ-F1 and MBF1 is essential for the binding site-dependent activation of transcription. A homology search in the databases revealed that the deduced amino acid sequence of MBF1 is conserved across species from yeast to human.
Resumo:
tRNA binding to the ribosomal P site is dependent not only on correct codon–anticodon interaction but also involves identification of structural elements of tRNA by the ribosome. By using a phosphorothioate substitution–interference approach, we identified specific nonbridging Rp-phosphate oxygens in the anticodon loop of tRNAPhe from Escherichia coli which are required for P-site binding. Stereo-specific involvement of phosphate oxygens at these positions was confirmed by using synthetic anticodon arm analogues at which single Rp- or Sp-phosphorothioates were incorporated. Identical interference results with yeast tRNAPhe and E. coli tRNAfMet indicate a common backbone conformation or common recognition elements in the anticodon loop of tRNAs. N-ethyl-N-nitrosourea modification–interference experiments with natural tRNAs point to the importance of the same phosphates in the loop. Guided by the crystal structure of tRNAPhe, we propose that specific Rp-phosphate oxygens are required for anticodon loop (“U-turn”) stabilization or are involved in interactions with the ribosome on correct tRNA–mRNA complex formation.
Resumo:
Interactions among transcription factors that bind to separate sequence elements require bending of the intervening DNA and juxtaposition of interacting molecular surfaces in an appropriate orientation. Here, we examine the effects of single amino acid substitutions adjacent to the basic regions of Fos and Jun as well as changes in sequences flanking the AP-1 site on DNA bending. Substitution of charged amino acid residues at positions adjacent to the basic DNA-binding domains of Fos and Jun altered DNA bending. The change in DNA bending was directly proportional to the change in net charge for all heterodimeric combinations between these proteins. Fos and Jun induced distinct DNA bends at different binding sites. Exchange of a single base pair outside of the region contacted in the x-ray crystal structure altered DNA bending. Substitution of base pairs flanking the AP-1 site had converse effects on the opposite directions of DNA bending induced by homodimers and heterodimers. These results suggest that Fos and Jun induce DNA bending in part through electrostatic interactions between amino acid residues adjacent to the basic region and base pairs flanking the AP-1 site. DNA bending by Fos and Jun at inverted binding sites indicated that heterodimers bind to the AP-1 site in a preferred orientation. Mutation of a conserved arginine within the basic regions of Fos and transversion of the central C:G base pair in the AP-1 site to G:C had complementary effects on the orientation of heterodimer binding and DNA bending. The conformational variability of the Fos–Jun–AP-1 complex may contribute to its functional versatility at different promoters.
Resumo:
Müllerian inhibiting substance (MIS) is a key element required to complete mammalian male sex differentiation. The expression pattern of MIS is tightly regulated in fetal, neonatal, and prepubertal testes and adult ovaries and is well conserved among mammalian species. Although several factors have been shown to be essential to MIS expression, its regulatory mechanisms are not fully understood. We have examined MIS promoter activity in 2-day postnatal primary cultures of rat Sertoli cells that continue to express endogenous MIS mRNA. Using this system, we found that the region between human MIS−269 and −192 is necessary for full MIS promoter activity. We identified by DNase I footprint and electrophoretic mobility-shift analyses a distal steroidogenic factor-1 (SF-1)-binding site that is essential for full promoter activity. Mutational analysis of this new distal SF-1 site and the previously identified proximal SF-1 site showed that both are necessary for transcriptional activation. Moreover, the proximal promoter also contains multiple GATA-4-binding sites that are essential for functional promoter activity. Thus multiple SF-1- and GATA-4-binding sites in the MIS promoter are required for normal tissue-specific and developmental expression of MIS.
Resumo:
The three single-headed monomeric myosin I isozymes of Acanthamoeba castellanii (AMIs)—AMIA, AMIB, and AMIC—are among the best-studied of all myosins. We have used AMIC to study structural correlates of myosin’s actin-activated ATPase. This activity is normally controlled by phosphorylation of Ser-329, but AMIC may be switched into constitutively active or inactive states by substituting this residue with Glu or Ala, respectively. To determine whether activation status is reflected in structural differences in the mode of attachment of myosin to actin, these mutant myosins were bound to actin filaments in the absence of nucleotide (rigor state) and visualized at 24-Å resolution by using cryoelectron microscopy and image reconstruction. No such difference was observed. Consequently, we suggest that regulation may be affected not by altering the static (time-averaged) structure of AMIC but by modulating its dynamic properties, i.e., molecular breathing. The tail domain of vertebrate intestinal brush-border myosin I has been observed to swing through 31° on binding of ADP. However, it was predicted on grounds of differing kinetics that any such effects with AMIC should be small [Jontes, J. D., Ostap, E. M., Pollard, T. D. & Milligan, R. A. (1998) J. Cell Biol. 141, 155–162]. We have confirmed this hypothesis by observing actin-associated AMIC in its ADP-bound state. Finally, we compared AMIC to brush-border myosin I and AMIB, which were previously studied under similar conditions. In each case, the shape and angle of attachment to F-actin of the catalytic domain is largely conserved, but the domain structure and disposition of the tail is distinctively different for each myosin.
Resumo:
Rab8 is a small GTP-binding protein that plays a role in vesicular transport from the trans-Golgi network to the basolateral plasma membrane in polarized epithelial cells (MDCK), and to the dendritic surface in hippocampal neurons. As is the case for most other rab proteins, the precise molecular interactions by which rab8 carries out its function remain to be elucidated. Here we report the identification and the complete cDNA-derived amino acid sequence of a murine rab8-interacting protein (rab8ip) that specifically interacts with rab8 in a GTP-dependent manner. Rab8ip displays 93% identity with the GC kinase, a serine/threonine protein kinase recently identified in human lymphoid tissue that is activated in the stress response. Like the GC kinase, rab8ip has protein kinase activity manifested by autophosphorylation and phosphorylation of the classical serine/threonine protein kinase substrates, myelin basic protein and casein. When coexpressed in transfected 293T cells, rab8 and the rab8ip/GC kinase formed a complex that could be recovered by immunoprecipitation with antibodies to rab8. Cell fractionation and immunofluorescence analyses indicate that in MDCK cells endogenous rab8ip is present both in the cytosol and as a peripheral membrane protein concentrated in the Golgi region and basolateral plasma membrane domains, sites where rab8 itself is also located. In light of recent evidence that rab proteins may act by promoting the stabilization of SNARE complexes, the specific GTP-dependent association of rab8 with the rab8ip/GC kinase raises the possibility that rab-regulated protein phosphorylation is important for vesicle targeting or fusion. Moreover, the rab8ip/GC kinase may serve to modulate secretion in response to stress stimuli.
Resumo:
A detailed study has been carried out on the dependence of folate binding on the concentration of FBP (folate-binding protein) at pH 5.0, conditions selected to prevent complications arising from the pre-existing self-association of the acceptor. In contrast with the mandatory requirement that reversible interaction of ligand with a single acceptor site should exhibit a unique, rectangular hyperbolic binding curve, results obtained by ultrafiltration for the FBP-folate system required description in terms of (i) a sigmoidal relationship between concentrations of bound and free folate and (ii) an inverse dependence of affinity on FBP concentration. These findings have been attributed to the difficulties in determining the free ligand concentration in the FBP-folate mixtures for which reaction is essentially stoichiometric. This explanation also accounts for the similar published behaviour of the FBP-folate system at neutral pH, which had been attributed erroneously to acceptor self-association, a phenomenon incompatible with the experimental findings because of its prediction of a greater affinity for folate with increasing FBP concentration.
Resumo:
A number of agents with differing selectivity profiles for the non-a2 adrenoceptor binding site (NAIBS), imidazoline preferring receptor (IPR) and a2-adrenoceptor were employed in a series of behavioural and neurochemical experiments to determine a functional role for the former two sites. The highly selective NAIBS ligand RX801 077 produced an increase in rat brain extracellular noradrenaline (NA) levels, as determined by the technique of in vivo microdialysis, which may underlie its ability to produce a discriminable cue in the same species. This increase in NA may be due to a suggested link between the NAIBS and the monoamine oxidase inhibitor (MAOI) activity of RX801 077. For instance, the RX801 077 cue was substituted for by the MAOI drugs pargyline and moclobemide, which themselves down regulate NAIBS when administered chronically. RX811 059 substituted for the RX801 077 cue which may be due its ability to stimulate NA release via its activity as a highly selective a2-adrenoceptor antagonist. An effect upon NA output may also explain the ability of RX801 077 to 'mimic' the anti-immobility effect of the antidepressant drug desmethylimipramine (DMJ) in the forced swimming test. Further studies are therefore required to examine a possible role for the NAIBS in the treatment of depression. Discriminable cues were also produced by RX811 059 and the a2- adrenoceptor agonist clonidine, probably as a consequence of their respective ability to stimulate and inhibit NA output via their opposing activity at a2-adrenoceptors. The IPR has been suggested to play a role in mediating the hypotensive effect of clonidine, although a precise role was unable to be established for this site in the present studies due to the unavailability of highly selective IPA agents.
Resumo:
Tonic conductance mediated by extrasynaptic GABAA receptors has been implicated in the modulation of network oscillatory activity. Using an in vitro brain slice to produce oscillatory activity and a kinetic model of GABAA receptor dynamics, we show that changes in tonic inhibitory input to fast spiking interneurons underlie benzodiazepine-site mediated modulation of neuronal network synchrony in rat primary motor cortex. We found that low concentrations (10 nM) of the benzodiazepine site agonist, zolpidem, reduced the power of pharmacologically-induced beta-frequency (15–30 Hz) oscillatory activity. By contrast, higher doses augmented beta power. Application of the antagonist, flumazenil, also increased beta power suggesting endogenous modulation of the benzodiazepine binding site. Voltage-clamp experiments revealed that pharmacologically-induced rhythmic inhibitory postsynaptic currents were reduced by 10 nM zolpidem, suggesting an action on inhibitory interneurons. Further voltage -clamp studies of fast spiking cells showed that 10 nM zolpidem augmented a tonic inhibitory GABAA receptor mediated current in fast spiking cells whilst higher concentrations of zolpidem reduced the tonic current. A kinetic model of zolpidem-sensitive GABAA receptors suggested that incubation with 10 nM zolpidem resulted in a high proportion of GABAA receptors locked in a kinetically slow desensitized state whilst 30 nM zolpidem favoured rapid transition into and out of desensitized states. This was confirmed experimentally using a challenge with saturating concentrations of GABA. Selective modulation of an interneuron-specific tonic current may underlie the reversal of cognitive and motor deficits afforded by low-dose zolpidem in neuropathological states.
Resumo:
Action Plan B3 of the European Innovation Partnership on Active and Healthy Ageing (EIP on AHA) focuses on the integrated care of chronic diseases. Area 5 (Care Pathways) was initiated using chronic respiratory diseases as a model. The chronic respiratory disease action plan includes (1) AIRWAYS integrated care pathways (ICPs), (2) the joint initiative between the Reference site MACVIA-LR (Contre les MAladies Chroniques pour un VIeillissement Actif) and ARIA (Allergic Rhinitis and its Impact on Asthma), (3) Commitments for Action to the European Innovation Partnership on Active and Healthy Ageing and the AIRWAYS ICPs network. It is deployed in collaboration with the World Health Organization Global Alliance against Chronic Respiratory Diseases (GARD). The European Innovation Partnership on Active and Healthy Ageing has proposed a 5-step framework for developing an individual scaling up strategy: (1) what to scale up: (1-a) databases of good practices, (1-b) assessment of viability of the scaling up of good practices, (1-c) classification of good practices for local replication and (2) how to scale up: (2-a) facilitating partnerships for scaling up, (2-b) implementation of key success factors and lessons learnt, including emerging technologies for individualised and predictive medicine. This strategy has already been applied to the chronic respiratory disease action plan of the European Innovation Partnership on Active and Healthy Ageing.
Resumo:
Action Plan B3 of the European Innovation Partnership on Active and Healthy Ageing (EIP on AHA) focuses on the integrated care of chronic diseases. Area 5 (Care Pathways) was initiated using chronic respiratory diseases as a model. The chronic respiratory disease action plan includes (1) AIRWAYS integrated care pathways (ICPs), (2) the joint initiative between the Reference site MACVIA-LR (Contre les MAladies Chroniques pour un VIeillissement Actif) and ARIA (Allergic Rhinitis and its Impact on Asthma), (3) Commitments for Action to the European Innovation Partnership on Active and Healthy Ageing and the AIRWAYS ICPs network. It is deployed in collaboration with the World Health Organization Global Alliance against Chronic Respiratory Diseases (GARD). The European Innovation Partnership on Active and Healthy Ageing has proposed a 5-step framework for developing an individual scaling up strategy: (1) what to scale up: (1-a) databases of good practices, (1-b) assessment of viability of the scaling up of good practices, (1-c) classification of good practices for local replication and (2) how to scale up: (2-a) facilitating partnerships for scaling up, (2-b) implementation of key success factors and lessons learnt, including emerging technologies for individualised and predictive medicine. This strategy has already been applied to the chronic respiratory disease action plan of the European Innovation Partnership on Active and Healthy Ageing.
Resumo:
The ligand-binding domain of the low-density lipoprotein (LDL) receptor is comprised of seven tandemly repeated ligand-binding modules, each being approximately 40 amino acids long and containing six conserved cysteine residues. We have expressed and characterized a concatemer of the first two modules (LB1 and LB2) of the human LDL receptor. Oxidative folding of the recombinant concatemer (rLB(1-2)), in the presence of calcium ions, gave a single dominant isomer with six disulfide bonds. Peptic cleavage of the short Linker region that connects the last cysteine residue of LB1 and the first cysteine residue of LB2 yielded two discrete fragments, thus excluding the presence of intermodule disulfide bonds. The N-terminal module, LB1, reacted with a conformation-specific monoclonal antibody (IgG-C7) made to LB1 in the native LDL receptor. From this, we concluded that the first module was correctly folded, with the same set of disulfide bonds as LB1 of the LDL receptor. The disulfide bond connections of LB2 were identified from mass spectral analysis of fragments formed by digestion of the C-terminal peptic fragment with elastase. These data showed that the disulfide bonds of LB2 connected Cys(I) and Cys(III), Cys(II) and Cys(V), and Cys(IV) and Cys(VI). This pattern is identical to that found for recombinant LB1 and LB2. The concatemer has two high-affinity calcium-binding sites, one per module. An analysis of the secondary chemical shifts of C alpha protons shows that the conformations of LB1 and LB2 in the concatemer are very similar to those of the individual modules, with no evidence for strong interactions between the two modules.
Resumo:
Sulfonation is an important metabolic process involved in the excretion and in some cases activation of various endogenous compounds and xenobiotics. This reaction is catalyzed by a family of enzymes named sulfotransferases. The cytosolic human sulfotransferases SULT1A1 and SULT1A3 have overlapping yet distinct substrate specificities. SULT1A1 favors simple phenolic substrates such as p-nitrophenol, whereas SULT1A3 prefers monoamine substrates such as dopamine. In this study we have used a variety of phenolic substrates to functionally characterize the role of the amino acid at position 146 in SULT1A1 and SULT1A3. First, the mutation A146E in SULT1A1 yielded a SULT1A3-like protein with respect to the Michaelis constant for simple phenols. The mutation E146A in SULT1A3 resulted in a SULT1A1-like protein with respect to the Michaelis constant for both simple phenols and monoamine compounds. When comparing the specificity of SULT1A3 toward tyramine with that for p-ethylphenol (which differs from tyramine in having no amine group on the carbon side chain), we saw a 200-fold preference for tyramine. The kinetic data obtained with the E146A mutant of SULT1A3 for these two substrates clearly showed that this protein preferred substrates without an amine group attached. Second, changing the glutamic acid at position 146 of SULT1A3 to a glutamine, thereby neutralizing the negative charge at this position, resulted in a 360-fold decrease in the specificity constant for dopamine. The results provide strong evidence that residue 146 is crucial in determining the substrate specificity of both SULT1A1 and SULT1A3 and suggest that there is a direct interaction between glutamic acid 146 in SULT1A3 and monoamine substrates.
Resumo:
Background and Purpose - This study was undertaken to better clarify the risks associated with cigarette smoking and subarachnoid hemorrhage (SAH). Methods - The study included 432 incident cases of SAH frequency matched to 473 community SAH-free controls to determine dose-dependent associations of active and passive smoking ( at home) and smoking cessation with SAH. Results - Compared with never smokers not exposed to passive smoking, the adjusted odds ratio for SAH among current smokers was 5.0 (95% confidence interval [CI], 3.1 to 8.1); for past smokers, 1.2 ( 95% CI, 0.8 to 2.0); and for passive smokers, 0.9 ( 95% CI, 0.6 to 1.5). Current and lifetime exposures showed a clear dose-dependent effect, and risks appeared more prominent in women and for aneurysmal SAH. Approximately 1 in 3 cases of SAH could be attributed to current smoking, but risks decline quickly after smoking cessation, even among heavy smokers. Conclusions - A strong positive association was found between cigarette smoking and SAH, especially for aneurysmal SAH and women, which is virtually eliminated within a few years of smoking cessation. Large opportunities exist for preventing SAH through smoking avoidance and cessation programs.