961 resultados para ab initio calculations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of nanoscale low-dimensional systems could boost the sensitivity of gas sensors. In this work we simulate a nanoscopic sensor based on carbon nanotubes with a large number of binding sites using ab initio density functional electronic structure calculations coupled to the Non-Equilibrium Green's Function formalism. We present a recipe where the adsorption process is studied followed by conductance calculations of a single defect system and of more realistic disordered system considering different coverages of molecules as one would expect experimentally. We found that the sensitivity of the disordered system is enhanced by a factor of 5 when compared to the single defect one. Finally, our results from the atomistic electronic transport are used as input to a simple model that connects them to experimental parameters such as temperature and partial gas pressure, providing a procedure for simulating a realistic nanoscopic gas sensor. Using this methodology we show that nitrogen-rich carbon nanotubes could work at room temperature with extremely high sensitivity. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4739280]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The solid solution based on Nb5Si3 (Cr5B3 structure type, D8(l), tl32, 14/mcm, No140, a=6.5767 angstrom, c=11.8967 angstrom) in the Nb-Si-B system was studied from the structural and thermodynamic point of view both experimentally and by ab initio calculations. Rietveld refinement of powder X-ray synchrotron data allowed to determine the boron to silicon substitution mechanism and the structural parameters. Ab initio calculations of different ordered compounds and selected disordered alloys allowed to obtain in addition to the enthalpy of formation of the solution, substitution mechanism and structural parameters which are in excellent agreement with the experimental data. The stability of the phase is discussed. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gas-phase rotational motion of hexafluorobenzene has been measured in real time using femtosecond (fs) time-resolved rotational Raman coherence spectroscopy (RR-RCS) at T = 100 and 295 K. This four-wave mixing method allows to probe the rotation of non-polar gas-phase molecules with fs time resolution over times up to ∼5 ns. The ground state rotational constant of hexafluorobenzene is determined as B 0 = 1029.740(28) MHz (2σ uncertainty) from RR-RCS transients measured in a pulsed seeded supersonic jet, where essentially only the v = 0 state is populated. Using this B 0 value, RR-RCS measurements in a room temperature gas cell give the rotational constants B v of the five lowest-lying thermally populated vibrationally excited states ν7/8, ν9, ν11/12, ν13, and ν14/15. Their B v constants differ from B 0 by between −1.02 MHz and +2.23 MHz. Combining the B 0 with the results of all-electron coupled-cluster CCSD(T) calculations of Demaison et al. [Mol. Phys.111, 1539 (2013)] and of our own allow to determine the C-C and C-F semi-experimental equilibrium bond lengths r e(C-C) = 1.3866(3) Å and r e(C-F) = 1.3244(4) Å. These agree with the CCSD(T)/wCVQZ r e bond lengths calculated by Demaison et al. within ±0.0005 Å. We also calculate the semi-experimental thermally averaged bond lengths r g(C-C)=1.3907(3) Å and r g(C-F)=1.3250(4) Å. These are at least ten times more accurate than two sets of experimental gas-phase electron diffraction r g bond lengths measured in the 1960s.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

After decades of research on molecular excitons, only few molecular dimers are available on which exciton and vibronic coupling theories can be rigorously tested. In centrosymmetric H-bonded dimers consisting of identical (hetero)aromatic chromophores, the monomer electronic transition dipole moment vectors subtract or add, yielding S0 → S1 and S0 → S2 transitions that are symmetry-forbidden or -allowed, respectively. Symmetry breaking by 12C/13C or H/D isotopic substitution renders the forbidden transition weakly allowed. The excitonic coupling (Davydov splitting) can then be measured between the S0 → S1 and S0 → S2 vibrationless bands. We discuss the mass-specific excitonic spectra of five H-bonded dimers that are supersonically cooled to a few K and investigated using two-color resonant two-photon ionization spectroscopy. The excitonic splittings Δcalc predicted by ab initio methods are 5–25 times larger than the experimental excitonic splittings Δexp. The purely electronic ab initio splittings need to be reduced (“quenched”), reflecting the coupling of the electronic transition to the optically active vibrations of the monomers. The so-called quenching factors Γ < 1 can be determined from experiment (Γexp) and/or calculation (Γcalc). The vibronically quenched splittings Γ·Δcalc are found to nicely reproduce the experimental exciton splittings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have determined matrix elements for all experimental configurations of Ca III, including the 3s3p63d configuration. These values have been obtained using intermediate coupling (IC). For these IC calculations, we have used the standard method of least-squares fitting from the experimental energy levels, using the computer code developed by Robert Cowan. In this paper, using these matrix elements, we report the calculated values of the Ca III Stark widths and shifts for 148 spectral lines, of 56 Ca III spectral line transition probabilities and of eight radiative lifetimes of Ca III levels. The Stark widths and shifts, calculated using the Griem semi-empirical approach, correspond to the spectral lines of Ca III and are presented for an electron density of 1017 cm?3 and temperatures T = 1.0?10.0 (×104 K). The theoretical trends of the Stark broadening parameter versus the temperature are presented for transitions that are of astrophysical interest. There is good agreement between our calculations, for transition probabilities and radiative lifetimes, and the experimental values presented in the literature. We have not been able to find any values for the Stark parameters in the references.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tin disulfide SnS2 was recently proposed as a high efficiency solar cell precursor [1]. The aim of this work is a deep study of the structural disposition of the most important polytipes of this layered material, not only describing the electronic correlation but also the interatomic Van der Waals interactions that is present between the layers. The two recent implementations to take Van der Waals interactions into account in the VASP code are the self-consistent Dion et al. [2] functional optimized for solids by Michaelides et al [3] and the Grimme [4] dispersion correction that is applied after each autoconsistent PBE electronic calculation. In this work these two methods are compared with DFT PBE functional. The results we will presented at this Conference, demonstrates the enhancement of the geometric parameters by the use of the Van der Waals interactions in agreement with the experimental values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A two stage approach to performing ab initio calculations on medium and large sized molecules is described. The first step is to perform SCF calculations on small molecules or molecular fragments using the OPIT Program. This employs a small basis set of spherical and p-type Gaussian functions. The Gaussian functions can be identified very closely with atomic cores, bond pairs, lone pairs, etc. The position and exponent of any of the Gaussian functions can be varied by OPIT to produce a small but fully optimised basis set. The second stage is the molecular fragments method. As an example of this, Gaussian exponents and distances are taken from an OPIT calculation on ethylene and used unchanged in a single SCF calculation on benzene. Approximate ab initio calculations of this type give much useful information and are often preferable to semi-empirical approaches, since the nature of the approximations involved is much better defined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Questa tesi intende approfondire da un punto di vista, sia teorico sia computazionale, le proprietà fondamentali dei fononi. A tal fine, sono presentati i modelli quantistici di Einstein e di Debye che permettono la derivazione analitica degli osservabili macroscopici principali di un solido, come l’energia media e la capacità termica. Ciò è possibile tramite una trattazione meccano-statistica basata sull’approssimazione armonica dei modi normali di vibrazione degli ioni reticolari. Quindi, all’inizio si mostrano brevemente i risultati principali riguardanti l’oscillatore armonico quantistico. Successivamente, si approfondiscono i temi della dispersione fononica e della densità degli stati vibrazionali per reticoli cristallini 1D e 3D. Si ottiene che la prima non può essere considerata lineare se non nel limite di alte lunghezze d’onda, e che la seconda può presentare punti di singolarità correlati alla forma della relazione di dispersione. Infine, sono state svolte alcune analisi computazionali ab initio relative alla dispersione fononica, la densità degli stati vibrazionali e la frequenza di Debye del Carbonio (diamante) tramite i programmi VASP e Phonopy, confrontando i risultati con dati sperimentali presenti in letteratura.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that the ground state of zigzag bilayer graphene nanoribbons is nonmagnetic. It also possesses a finite gap, which has a nonmonotonic dependence with the width as a consequence of the competition between bulk and strongly attractive edge interactions. All results were obtained using ab initio total-energy density functional theory calculations with the inclusion of parametrized van der Waals interactions.