38 resultados para ZYMOMONAS
Resumo:
Zymomonas mobilis was immobilized using a cell suspension fixed to 8.6 x 10(7) CFU mL(-1) by spectrophotometry. This biomass was suspended in sodium alginate solution (3%) that was dropped with a hypodermic syringe into 0.2 M calcium chloride solution. Was test two initial pH of fermentation medium (4 and 5) and different sucrose concentrations 15, 20, 25, 30 and 35% at 30 degrees C, without stirring for 24, 48, 72 and 96 hours. The levan production to pH 4 was high in sucrose 25% for 24 (16.51 g L-1) and 48 (15.31 g L-1) hours. The best values obtained to pH 5 was in sucrose 35% during 48 (22.39 g L-1) and 96 (23.5 g L-1) hours, respectively. The maximum levan yield was 40.8% and 22.47% in sucrose 15% to pH 4 and 5, respectively. Substrate consumption to pH 4 was bigger in sucrose 15 (56.4%) and 20% (59.4%) and to pH 5 was in 25 (68.85%) and 35% (64.64%). In relation to immobilization efficiency, Zymomonas mobilis showed high adhesion and colonization in support, indicated by cell growth increased from 107 to 10(9) CFU mL(-1) during fermentation time.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Sucrose utilization by Zymomonas mobilis: Levan production optimization using submerged fermentation
Resumo:
Levan is an extracellular polysaccharide (EPS), constituted by linked fructose units β (2,6), obtained by transfructosilation reaction during fermentation of microorganisms in a sucrose rich culture medium. The bacterial levan production is a good alternative of fructose source, besides having certain functional characteristics in the human body, such as a hypocholesterolemic and an anticarcinogenic agent. In the food industry, the levan can be used to fix colors and flavors, as well as to thickening and stabilizing agent in foods. This work aimed to analyze the kinetic parameters for levan production by Zymomonas mobilis CCT 4494, using submerged fermentation. The response surface methodology (RSM), was utilized to predict the optimization of medium for exopolymer production and the independent variables studied were: initial pH, incubation temperature, sucrose, KCl, K2SO4, MgSO4 and CaCl2. It was observed that the bacterium Z. mobilis CCT 4494 well adapted in medium containing high concentrations of sucrose.
Resumo:
The levan is a biopolymer of great importance to the food industry since it is capable of defining and modifying the structure of one food, acting as stabilizer, thickener, gelling agent and being largely responsible for the texture of processed foods. The levan production by bacterial cell immobilization may potentialize the results of these studies, having advantages such as: high cell concentrations inside the reactor, increase the substrate absorption rate, improve the performance and reduce the risk of microbial contamination. Thus, this study aims to evaluate the levan production by immobilized Zymomonas mobilis in hybrid system of alginate/polyvinyl alcohol (PVA) when submitted to different sucrose concentrations (5, 10, 25 and 30%), pH (5.7 and 7.0) and incubation temperature of 30C for 12, 18 and 24 h. The results showed that the best levan production rate was 18.66 g/L at 30% sucrose concentration, with productivity 1.55 g/L/h at pH 7.0.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Neste trabalho, foi estudado o modelo matemático oscilatório proposto por Daugulis et al. (1997) referente a um processo contínuo de fermentação alcoólica, de modo a compreender sua estrutura, variáveis, fenômenos e hipóteses postuladas. O estudo foi realizado de modo a compreender como os mecanismos de inibição por produto e substrato, e como os mecanismos adaptativos do microrganismo são levados em consideração pelo modelo, resultando no comportamento oscilatório desejado. Por fim, foram realizadas simulações com perturbações do tipo degrau na taxa de diluição e na concentração de substrato na alimentação, de modo a extrapolar o comportamento do modelo.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The inhibitory action of acetic acid, ferulic acid, and syringaldehyde on metabolism of Candida guilliermondii yeast during xylose to xylitol bioconversion was evaluated. Assays were performed in buffered and nonbuffered semidefined medium containing xylose as main sugar (80.0 g/l), supplemented or not with acetic acid (0.8-2.6 g/l), ferulic acid (0.2-0.6 g/l), and/or syringaldehyde (0.3-0.8 g/l), according to a 2(3) full factorial design. Since only individual effects of the variables were observed, assays were performed in a next step in semidefined medium containing different concentrations of each toxic compound individually, for better understanding of their maximum concentration that can be present in the fermentation medium without affecting yeast metabolism. It was concluded that acetic acid, ferulic acid, and syringaldehyde are compounds that may affect Candida guilliermondii metabolism (mainly cell growth) during bioconversion of xylose to xylitol. Such results are of interest and reveal that complete removal of toxic compounds from the fermentation medium is not necessary to obtain efficient conversion of xylose to xylitol by Candida guilliermondii. Fermentation in buffered medium was also considered as an alternative to overcome the inhibition caused by these toxic compounds, mainly by acetic acid.
Resumo:
BACKGROUND: The combined effects of vanillin and syringaldehyde on xylitol production by Candida guilliermondii using response surface methodology (RSM) have been studied. A 2(2) full-factorial central composite design was employed for experimental design and analysis of the results. RESULTS: Maximum xylitol productivities (Q(p) = 0.74 g L(-1) h(-1)) and yields (Y(P/S) = 0.81 g g(-1)) can be attained by adding only vanillin at 2.0 g L(-1) to the fermentation medium. These data were closely correlated with the experimental results obtained (0.69 +/- 0.04 g L(-1) h(-1) and 0.77 +/- 0.01 g g(-1)) indicating a good agreement with the predicted value. C. guilliermondii was able to convert vanillin completely after 24 h of fermentation with 94% yield of vanillyl alcohol. CONCLUSIONS: The bioconversion of xylose into xylitol by C. guilliermondii is strongly dependent on the combination of aldehydes and phenolics in the fermentation medium. Vanillin is a source of phenolic compound able to improve xylitol production by yeast. The conversion of vanillin to alcohol vanilyl reveals the potential of this yeast for medium detoxification. (C) 2009 Society of Chemical Industry
Resumo:
Acetohydroxyacid synthase (AHAS; EC 4.1.3.18) catalyzes the first step in branched-chain amino acid biosynthesis. The enzyme requires thiamin diphosphate and FAD for activity, but the latter is unexpected, because the reaction involves no oxidation or reduction. Due to its presence in plants, AHAS is a target for sulfonylurea and imidazolinone herbicides. Here, the crystal structure to 2.6 A resolution of the catalytic subunit of yeast AHAS is reported. The active site is located at the dimer interface and is near the proposed herbicide-binding site. The conformation of FAD and its position in the active site are defined. The structure of AHAS provides a starting point for the rational design of new herbicides. (C) 2002 Elsevier Science Ltd.
Resumo:
Enzymic catalysis proceeds via intermediates formed in the course of substrate conversion. Here, we directly detect key intermediates in thiamin diphosphate (ThDP)-dependent enzymes during catalysis using H-1 NMR spectroscopy. The quantitative analysis of the relative intermediate concentrations allows the determination of the microscopic rate constants of individual catalytic steps. As demonstrated for pyruvate decarboxylase (PDC), this method, in combination with site-directed mutagenesis, enables the assignment of individual side chains to single steps in catalysis. In PDC, two independent proton relay systems and the stereochemical control of the enzymic environment account for proficient catalysis proceeding via intermediates at carbon 2 of the enzyme-bound cofactor. The application of this method to other ThDP-dependent enzymes provides insight into their specific chemical pathways.
Resumo:
A different organization for the xyl operon was found in different genomes of Burkholderia and Pseudomomas species. Degenerated primers were designed based on Burkholderia genomes and used to amplify the xylose isomerase gene (xylA) from Burkholderia sacchari IPT101 The gene encoded a protein of 329 amino acids, which showed the highest similarity (90%) to the homologous gene of Burkholderia dolosa. It was cloned in the broad host range plasmid pBBR1MCS-2, which partially restored growth and polyhydroxybutyrate production capability in xylose to a B. sacchari xyl(-) mutant. When xylA was overexpressed in the wild-type strain, it was not able to increase growth and polyhydroxybutyrate production, suggesting that XylA activity is not limiting for xylose utilization in B. sacchari.
Resumo:
Pós-graduação em Engenharia e Ciência de Alimentos - IBILCE
Resumo:
The symposium reported here was the thirteenth of a series devoted to talks by students on their biochemical engineering research. The first, third, fifth, ninth, and twelfth were at Kansas State University, the second and fourth were at the University of Nebraska–Lincoln, the sixth was in Kansas City and was hosted by Iowa State University, the seventh and tenth were at Iowa State, and the eighth and eleventh were at the University of Missouri–Columbia and Colorado State University, respectively. All symposia have been followed by proceedings edited by faculty of the host institution. Because final publication usually takes place elsewhere, papers here are brief, and often cover research in progress. ContentSequential Utilization of Mixed Sugars by Clostridium acetobutylicum, B. Hong, N. H. Choi, and L. T. Fan, Kansas State University The Effects of Dilution Rate on the Kinetics. of Anaerobic Acidogenesis, C. J. Huang, Colorado State University Ethanol Production by Zymomonas mobilis in Anaerobic Glucose-Limited Culture: A Yield Study, Mehmet D. Oner, Kansas State University Hydrolysis of Cellulosics by Enterobacteria, Michael R. Sierks, Iowa State University The Cellulase System of Chaetomium cellulolyticum, Nikhil Mehta, Colorado State University DNA Measurement as a Tool for Estimating Biomass Concentration in the Presence of Interfering Solids, Bamidele 0. Solomon, Kansas State University The Effect of Cellulose Crystallinity on Enzymatic Hydrolysis, Maria S. Bertran, Colorado State University High Performance Liquid Chromatography of Di- and Trisaccharides, Michael M. Meagher, Iowa State University Dynamics of Bubble Size .Distributions in Air-Lift Fermentors, c. H. Lee and Snehal A. Patel, Kansas State University A Thermal Coagulation Study of Alfalfa Leaf Proteins by Differential Scanning Calorimeter, Khalif Ahmed and Bruce Dale, Colorado State University Thermodynamic Efficiency of Photoautotrophic Growth, Hyeon Y. Lee, Kansas State University