993 resultados para Yang-Mill theory


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fermion boundary conditions play a relevant role in revealing the confinement mechanism of N=1 supersymmetric Yang-Mills theory with one compactified space-time dimension. A deconfinement phase transition occurs for a sufficiently small compactification radius, equivalent to a high temperature in the thermal theory where antiperiodic fermion boundary conditions are applied. Periodic fermion boundary conditions, on the other hand, are related to the Witten index and confinement is expected to persist independently of the length of the compactified dimension. We study this aspect with lattice Monte Carlo simulations for different values of the fermion mass parameter that breaks supersymmetry softly. We find a deconfined region that shrinks when the fermion mass is lowered. Deconfinement takes place between two confined regions at large and small compactification radii, that would correspond to low and high temperatures in the thermal theory. At the smallest fermion masses we find no indication of a deconfinement transition. These results are a first signal for the predicted continuity in the compactification of supersymmetric Yang-Mills theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a three-dimensional effective theory of Polyakov lines derived previously from lattice Yang-Mills theory and QCD by means of a resummed strong coupling expansion. The effective theory is useful for investigations of the phase structure, with a sign problem mild enough to allow simulations also at finite density. In this work we present a numerical method to determine improved values for the effective couplings directly from correlators of 4d Yang-Mills theory. For values of the gauge coupling up to the vicinity of the phase transition, the dominant short range effective coupling are well described by their corresponding strong coupling series. We provide numerical results also for the longer range interactions, Polyakov lines in higher representations as well as four-point interactions, and discuss the growing significance of non-local contributions as the lattice gets finer. Within this approach the critical Yang-Mills coupling β c is reproduced to better than one percent from a one-coupling effective theory on N τ = 4 lattices while up to five couplings are needed on N τ = 8 for the same accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This PhD Thesis is about certain infinite-dimensional Grassmannian manifolds that arise naturally in geometry, representation theory and mathematical physics. From the physics point of view one encounters these infinite-dimensional manifolds when trying to understand the second quantization of fermions. The many particle Hilbert space of the second quantized fermions is called the fermionic Fock space. A typical element of the fermionic Fock space can be thought to be a linear combination of the configurations m particles and n anti-particles . Geometrically the fermionic Fock space can be constructed as holomorphic sections of a certain (dual)determinant line bundle lying over the so called restricted Grassmannian manifold, which is a typical example of an infinite-dimensional Grassmannian manifold one encounters in QFT. The construction should be compared with its well-known finite-dimensional analogue, where one realizes an exterior power of a finite-dimensional vector space as the space of holomorphic sections of a determinant line bundle lying over a finite-dimensional Grassmannian manifold. The connection with infinite-dimensional representation theory stems from the fact that the restricted Grassmannian manifold is an infinite-dimensional homogeneous (Kähler) manifold, i.e. it is of the form G/H where G is a certain infinite-dimensional Lie group and H its subgroup. A central extension of G acts on the total space of the dual determinant line bundle and also on the space its holomorphic sections; thus G admits a (projective) representation on the fermionic Fock space. This construction also induces the so called basic representation for loop groups (of compact groups), which in turn are vitally important in string theory / conformal field theory. The Thesis consists of three chapters: the first chapter is an introduction to the backround material and the other two chapters are individually written research articles. The first article deals in a new way with the well-known question in Yang-Mills theory, when can one lift the action of the gauge transformation group on the space of connection one forms to the total space of the Fock bundle in a compatible way with the second quantized Dirac operator. In general there is an obstruction to this (called the Mickelsson-Faddeev anomaly) and various geometric interpretations for this anomaly, using such things as group extensions and bundle gerbes, have been given earlier. In this work we give a new geometric interpretation for the Faddeev-Mickelsson anomaly in terms of differentiable gerbes (certain sheaves of categories) and central extensions of Lie groupoids. The second research article deals with the question how to define a Dirac-like operator on the restricted Grassmannian manifold, which is an infinite-dimensional space and hence not in the landscape of standard Dirac operator theory. The construction relies heavily on infinite-dimensional representation theory and one of the most technically demanding challenges is to be able to introduce proper normal orderings for certain infinite sums of operators in such a way that all divergences will disappear and the infinite sum will make sense as a well-defined operator acting on a suitable Hilbert space of spinors. This research article was motivated by a more extensive ongoing project to construct twisted K-theory classes in Yang-Mills theory via a Dirac-like operator on the restricted Grassmannian manifold.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We study the free fermion theory in 1+1 dimensions deformed by chemical potentials for holomorphic, conserved currents at finite temperature and on a spatial circle. For a spin-three chemical potential mu, the deformation is related at high temperatures to a higher spin black hole in hs0] theory on AdS(3) spacetime. We calculate the order mu(2) corrections to the single interval Renyi and entanglement entropies on the torus using the bosonized formulation. A consistent result, satisfying all checks, emerges upon carefully accounting for both perturbative and winding mode contributions in the bosonized language. The order mu(2) corrections involve integrals that are finite but potentially sensitive to contact term singularities. We propose and apply a prescription for defining such integrals which matches the Hamiltonian picture and passes several non-trivial checks for both thermal corrections and the Renyi entropies at this order. The thermal corrections are given by a weight six quasi-modular form, whilst the Renyi entropies are controlled by quasi-elliptic functions of the interval length with modular weight six. We also point out the well known connection between the perturbative expansion of the partition function in powers of the spin-three chemical potential and the Gross-Taylor genus expansion of large-N Yang-Mills theory on the torus. We note the absence of winding mode contributions in this connection, which suggests qualitatively different entanglement entropies for the two systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conformal supergravity arises in presently known formulations of twistor-string theory either via closed strings or via gauge-singlet open strings. We explore this sector of twistor-string theory, relating the relevant string modes to the particles and fields of conformal supergravity. We use the twistor-string theory to compute some tree level scattering amplitudes with supergravitons. Since the supergravitons interact with the same coupling constant as the Yang-Mills fields, conformal supergravity states will contribute to loop amplitudes of Yang-Mills gluons in these theories. Those loop amplitudes will therefore not coincide with the loop amplitudes of pure super Yang-Mills theory. © SISSA/ISAS 2004.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Non-abelian gauge theories are super-renormalizable in 2+1 dimensions and suffer from infrared divergences. These divergences can be avoided by adding a Chern-Simons term, i.e., building a Topologically Massive Theory. In this sense, we are interested in the study of the Topologically Massive Yang-Mills theory on the Null-Plane. Since this is a gauge theory, we need to analyze its constraint structure which is done with the Hamilton-Jacobi formalism. We are able to find the complete set of Hamiltonian densities, and build the Generalized Brackets of the theory. With the GB we obtain a set of involutive Hamiltonian densities, generators of the evolution of the system. © 2010 American Institute of Physics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work analyses a hypothetically improved perturbative approach taking a dressed massive-like gluon propagator and an effective coupling into account. As an early step, corrections were calculated to the ghost and gluon propagators, and the ghost-gluon vertex in the Landau gauge, pure SU(3) Yang-Mills theory. Results were satisfactorily compared with lattice data. © 2013 American Institute of Physics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Within the superfield approach, we discuss the two-dimensional noncommutative super-QED. Its all-order finiteness is explicitly shown. Copyright (C) EPLA, 2012

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the hydrodynamic properties of strongly coupled SU(N) Yang-Mills theory of the D1-brane at finite temperature in the framework of gauge/gravity duality. The only non-trivial viscous transport coefficient in 1+1 dimensions is the bulk viscosity. We evaluate the bulk viscosity by isolating the quasi-normal mode corresponding to the sound channel for the gravitational background of the D1-brane. We find that the ratio of the bulk viscosity to the entropy density to be 1/4 pi. This ratio continues to be 1/4 pi also in the regime when the D1-brane Yang-Mills theory is dual to the gravitational background of the fundamental string. Our analysis shows that this ratio is equal to 1/4 pi for a class of gravitational backgrounds dual to field theories in 1+1 dimensions obtained by considering D1-branes at cones over Sasaki-Einstein 7-manifolds.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

When ordinary nuclear matter is heated to a high temperature of ~ 10^12 K, it undergoes a deconfinement transition to a new phase, strongly interacting quark-gluon plasma. While the color charged fundamental constituents of the nuclei, the quarks and gluons, are at low temperatures permanently confined inside color neutral hadrons, in the plasma the color degrees of freedom become dominant over nuclear, rather than merely nucleonic, volumes. Quantum Chromodynamics (QCD) is the accepted theory of the strong interactions, and confines quarks and gluons inside hadrons. The theory was formulated in early seventies, but deriving first principles predictions from it still remains a challenge, and novel methods of studying it are needed. One such method is dimensional reduction, in which the high temperature dynamics of static observables of the full four-dimensional theory are described using a simpler three-dimensional effective theory, having only the static modes of the various fields as its degrees of freedom. A perturbatively constructed effective theory is known to provide a good description of the plasma at high temperatures, where asymptotic freedom makes the gauge coupling small. In addition to this, numerical lattice simulations have, however, shown that the perturbatively constructed theory gives a surprisingly good description of the plasma all the way down to temperatures a few times the transition temperature. Near the critical temperature, the effective theory, however, ceases to give a valid description of the physics, since it fails to respect the approximate center symmetry of the full theory. The symmetry plays a key role in the dynamics near the phase transition, and thus one expects that the regime of validity of the dimensionally reduced theories can be significantly extended towards the deconfinement transition by incorporating the center symmetry in them. In the introductory part of the thesis, the status of dimensionally reduced effective theories of high temperature QCD is reviewed, placing emphasis on the phase structure of the theories. In the first research paper included in the thesis, the non-perturbative input required in computing the g^6 term in the weak coupling expansion of the pressure of QCD is computed in the effective theory framework at an arbitrary number of colors. The two last papers on the other hand focus on the construction of the center-symmetric effective theories, and subsequently the first non-perturbative studies of these theories are presented. Non-perturbative lattice simulations of a center-symmetric effective theory for SU(2) Yang-Mills theory show --- in sharp contrast to the perturbative setup --- that the effective theory accommodates a phase transition in the correct universality class of the full theory. This transition is seen to take place at a value of the effective theory coupling constant that is consistent with the full theory coupling at the critical temperature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the hydrodynamic properties of strongly coupled SU(N) Yang-Mills theory of the D1-brane at finite temperature and at a non-zero density of R-charge in the framework of gauge/gravity duality. The gravity dual description involves a charged black hole solution of an Einstein-Maxwell-dilaton system in 3 dimensions which is obtained by a consistent truncation of the spinning D1-brane in 10 dimensions. We evaluate thermal and electrical conductivity as well as the bulk viscosity as a function of the chemical potential conjugate to the R-charges of the D1-brane. We show that the ratio of bulk viscosity to entropy density is independent of the chemical potential and is equal to 1/4 pi. The thermal conductivity and bulk viscosity obey a relationship similar to the Wiedemann-Franz law. We show that at the boundary of thermodynamic stability, the charge diffusion mode becomes unstable and the transport coefficients exhibit critical behaviour. Our method for evaluating the transport coefficients relies on expressing the second order differential equations in terms of a first order equation which dictates the radial evolution of the transport coefficient. The radial evolution equations can be solved exactly for the transport coefficients of our interest. We observe that transport coefficients of the D1-brane theory are related to that of the M2-brane by an overall proportionality constant which sets the dimensions.