952 resultados para Wheel rims.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fibre Bragg Grating (FBG) sensors have been installed along an existing line for the purposes of train detection and weight measurement. The results show fair accuracy and high resolution on the vertical force acted on track when the train wheels are rolling upon. While the sensors are already in place and data is available, further applications beyond train detection are explored. This study presents the analysis on the unique signatures from the data collected to characterise wheel-rail interaction for rail defect detection. Focus of this first stage of work is placed on the repeatability of signals from the same wheel-rail interactions while the rail is in healthy state. Discussions on the preliminary results and hence the feasibility of this condition monitoring application, as well as technical issues to be addressed in practice, are given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the results of testing to determine pavement forces from three heavy vehicles (HVs). The HVs were instrumented to measure their wheel forces. A “novel roughness” value of the roads during testing is also derived. The various dynamic pavement forces are presented according to the range of novel roughness of pavement surfacings encountered during testing. The paper then examines the relationship between the two derived wavelengths predominant within the HV suspensions; those of axle hop and body-bounce. How these may be considered as contributing to spatial repetition of pavement forces from HVs is discussed. The paper concludes that pavement models need to be revised since dynamic forces from HVs in particular are not generally considered in current pavement design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wheel-rail interaction is one of the most important research topics in railway engineering. It includes track vibration, track impact response and safety of the track. Track structure failures caused by impact forces can lead to significant economic loss for track owners through damage to rails and to the sleepers beneath. The wheel-rail impact forces occur because of imperfections on the wheels or rails such as wheel flats, irregular wheel profile, rail corrugation and differences in the height of rails connected at a welded joint. In this paper, a finite element model for the wheel flat study is developed by use of the FEA software package ANSYS. The effect of the wheel flat to impact force on sleepers is investigated. It has found that the wheel flat significantly increases impact forces and maximum Von Mises stress, and also delays the peak position of dynamic variation for impact forces on both rail and sleeper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of the discontinuity of the rail ends and the presence of lower modulus insulation material at the gap to the variations of stresses in the insulated rail joint (IRJ) is presented. A three-dimensional wheel – rail contact model in the finite element framework is used for the analysis. It is shown that the maximum stress occurs in the subsurface of the railhead when the wheel contact occurs far away from the rail end and migrates to the railhead surface as the wheel approaches the rail end; under this condition, the interface between the rail ends and the insulation material has suffered significantly increased levels of stress concentration. The ratio of the elastic modulus of the railhead and insulation material is found to alter the levels of stress concentration. Numerical result indicates that a higher elastic modulus insulating material can reduce the stress concentration in the railhead but will generate higher stresses in the insulation material, leading to earlier failure of the insulation material

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When wheels pass over insulated rail joints (IRJs) a vertical impact force is generated. The ability to measure the impact force is valuable as the force signature helps understand the behaviour of the IRJs, in particular their potential for failure. The impact forces are thought to be one of the main factors that cause damage to the IRJ and track components. Study of the deterioration mechanism helps finding new methods to improve the service life of IRJs in track. In this research, the strain-gage-based wheel load detector, for the first time, is employed to measure the wheel–rail contact-impact force at an IRJ in a heavy haul rail line. In this technique, the strain gages are installed within the IRJ assembly without disturbing the structural integrity of IRJ and arranged in a full wheatstone bridge to form a wheel load detector. The instrumented IRJ is first tested and calibrated in the lab and then installed in the field. For comparison purposes, a reference rail section is also instrumented with the same strain gage pattern as the IRJ. In this paper the measurement technique, the process of instrumentation, and tests as well as some typical data obtained from the field and the inferences are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wheel-rail rolling contact at railhead edge, such as a gap in an insulated rail joint, is a complex problem; there are only limited analytical, numerical and experimental studies available on this problem in the academic literature. This paper describes experimental and numerical investigations of railhead strains in the vicinity of the edge under the contact of a loaded wheel. A full-scale test rig was developed to cyclically apply wheel/rail rolling contact load to the edge zone of the railhead. An image analysis technique was employed to determine the railhead vertical, lateral and shear strain components. The vertical strains determined using the image analysis method have been validated with the strain gauge measurements and used for the calibration of a 3D nonlinear Finite Element Model (FEM) that simulates the wheel/rail contact at the railhead edge and use suitable boundary conditions commensurate to the experimental setup. The FEM was then used to determine other states of strains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wheel-rail interaction is one of the most important research topics in railway engineering. It includes track vibration, track impact response and safety of the track. Track structure failures caused by impact forces can lead to significant economic loss for track owners through damage to rails and to the sleepers beneath. The wheel-rail impact forces occur because of imperfections on the wheels or rails such as wheel flats, irregular wheel profile, rail corrugation and differences in the height of rails connected at a welded joint. The vehicle speed and static wheel load are important factors of the track design, because they are related to the impact forces under wheel-rail defects. In this paper, a 3-Dimensional finite element model for the study of wheel flat impact is developed by use of the FEA software package ANSYS. The effects of the wheel flat to impact force on sleepers with various speeds and static wheel loads under a critical wheel flat size are investigated. It has found that both wheel-rail impact force and impact force on sleeper induced by wheel flat are varying nonlinearly by increasing the vehicle speed; both impact forces are nonlinearly and monotonically increasing by increasing the static wheel load. The relationships between both of impact forces induced by wheel flat and vehicles speed or static load are important to the track engineers to improve the design and maintenance methods in railway industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Significant wheel-rail dynamic forces occur because of imperfections in the wheels and/or rail. One of the key responses to the transmission of these forces down through the track is impact force on the sleepers. Dynamic analysis of nonlinear systems is very complicated and does not lend itself easily to a classical solution of multiple equations. Trying to deduce the behaviour of track components from experimental data is very difficult because such data is hard to obtain and applies to only the particular conditions of the track being tested. The finite element method can be the best solution to this dilemma. This paper describes a finite element model using the software package ANSYS for various sized flat defects in the tread of a wheel rolling at a typical speed on heavy haul track. The paper explores the dynamic response of a prestressed concrete sleeper to these defects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wheel–rail interaction is one of the most important research topics in railway engineering. It involves track impact response, track vibration and track safety. Track structure failures caused by wheel–rail impact forces can lead to significant economic loss for track owners through damage to rails and to the sleepers beneath. Wheel–rail impact forces occur because of imperfections in the wheels or rails such as wheel flats, irregular wheel profiles, rail corrugations and differences in the heights of rails connected at a welded joint. A wheel flat can cause a large dynamic impact force as well as a forced vibration with a high frequency, which can cause damage to the track structure. In the present work, a three-dimensional (3-D) finite element (FE) model for the impact analysis induced by the wheel flat is developed by use of the finite element analysis (FEA) software package ANSYS and validated by another validated simulation. The effect of wheel flats on impact forces is thoroughly investigated. It is found that the presence of a wheel flat will significantly increase the dynamic impact force on both rail and sleeper. The impact force will monotonically increase with the size of wheel flats. The relationships between the impact force and the wheel flat size are explored from this finite element analysis and they are important for track engineers to improve their understanding of the design and maintenance of the track system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerous Abaqus [1] finite element analyses have been carried out using various plasticity models to investigate the effect of friction force on the rail head in relation to both the development of the accumulated plastic strain (PEEQ) and the changes in the depth of PEEQ distribution in the wheel-rail contact. The normal force distribution on the rail head was assumed to be Hertzian. The tangential force was implemented as a fraction of the normal force in the subroutine. Each analysis was carried out for a single pass and the effect of various friction coefficient values has been observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An ironless motor for use as direct wheel drive is presented. The motor is intended for use in a lightweight (600kg), low drag, series hybrid commuter vehicle under development at The University of Queensland. The vehicle will utilise these ironless motors in each of its rear wheels, with each motor producing a peak torque output of 500Nm and a maximum rotational speed of 1500rpm. The axial flux motor consists of twin Ironless litz wire stators with a central magnetic ring and simplified Halbach magnet arrays on either side. A small amount of iron is used to support the outer Halbach arrays and to improve the peak magnetic flux density. Ducted air cooling is used to remove heat from the motor and will allow for a continuous torque rating of 250Nm. Ironless machines have previously been shown to be effective in high speed, high frequency applications (+1000Hz). They are generally regarded as non-optimal for low speed applications as iron cores allow for better magnet utilisation and do not significantly increase the weight of a machine. However, ironless machines can also be seen to be effective in applications where the average torque requirement is much lower than the peak torque requirement such as in some vehicle drive applications. The low spinning losses in ironless machines are shown to result in very high energy throughput efficiency in a wide range of vehicle driving cycles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigates the braking performance requirements of the UltraCommuter, a lightweight series hybrid electric vehicle currently under development at the University of Queensland. With a predicted vehicle mass of 600 kg and two in-wheel motors each capable of 500 Nm of peak torque, decelerations up to 0.46 g are theoretically possible using purely regenerative braking. With 99% of braking demands less than 0.35 g, essentially all braking can be regenerative. The wheel motors have sufficient peak torque capability to lock the rear wheels in combination with front axle braking, eliminating the need for friction braking at the rear. Emergency braking levels approaching 1 g are achieved by supplementation with front disk brakes. This paper presents equations describing the peak front and rear axle braking forces which occur under straight line braking, including gradients. Conventionally, to guarantee stability, mechanical front/rear proportioning of braking effort ensures that the front axle locks first. In this application, all braking is initially regenerative at the rear, and an adaptive ''by-wire'' proportioning system presented ensures this stability requirement is still satisfied. Front wheel drive and all wheel drive systems are also discussed. Finally, peak and continuous performance measures, not commonly provided for friction brakes, are derived for the UltraCommuter's motor capability and range of operation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project advances the knowledge of rail wear and crack formation due to rail/wheel contact in Australian heavy-haul railway lines. This comprehensive study utilised numerous techniques including: simulation using a twin-disk test-rig, scanning electron microscope particle analysis and finite element modeling for material failure prediction. Through this work, new material failure models have been developed which may be used to predict the lifetime and reliability of materials undergoing severe contact conditions.