947 resultados para Virtual state energy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The trajectory of the first excited Efimov state is investigated by using a renormalized zero-range three-body model for a system with two bound and one virtual two-body subsystems. The approach is applied to n-n-C-18, where the n-n virtual energy and the three-body ground state are kept fixed. It is shown that such three-body excited state goes from a bound to a virtual state when the n-C-18 binding energy is increased. Results obtained for the n-C-19 elastic cross-section at low energies also show dominance of an S-matrix pole corresponding to a bound or virtual Efimov state. It is also presented a brief discussion of these findings in the context of ultracold atom physics with tunable scattering lengths. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report cross sections for elastic electron scattering by gas phase glycine (neutral form), obtained with the Schwinger multichannel method. The present results are the first obtained with a new implementation that combines parallelization with OpenMP directives and pseudopotentials. The position of the well known pi* shape resonance ranged from 2.3 eV to 2.8 eV depending on the polarization model and conformer. For the most stable isomer, the present result (2.4 eV) is in fair agreement with electron transmission spectroscopy assignments (1.93 +/- 0.05 eV) and available calculations. Our results also point out a shape resonance around 9.5 eV in the A' symmetry that would be weakly coupled to vibrations of the hydroxyl group. Since electron attachment to a broad and lower lying sigma* orbital located on the OH bond has been suggested the underlying mechanism leading to dissociative electron attachment at low energies, we sought for a shape resonance around similar to 4 eV. Though we obtained cross sections with the target molecule at the equilibrium geometry and with stretched OH bond lengths, least-squares fits to the calculated eigenphase sums did not point out signatures of this anion state (though, in principle, it could be hidden in the large background). The low energy (similar to 1 eV) integral cross section strongly scales as the bond length is stretched, and this could indicate a virtual state pole, since dipole supported bound states are not expected at the geometries addressed here. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3687345]

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Within the framework of second-order Rayleigh-Schrodinger perturbation theory, the polaronic correction to the first excited state energy of an electron in an quantum dot with anisotropic parabolic confinements is presented. Compared with isotropic confinements, anisotropic confinements will make the degeneracy of the excited states to be totally or partly lifted. On the basis of a three-dimensional Frohlich's Hamiltonian with anisotropic confinements, the first excited state properties in two-dimensional quantum dots as well as quantum wells and wires can also be easily obtained by taking special limits. Calculations show that the first excited polaronic effect can be considerable in small quantum dots.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we extract density of localized tail states from measurements of low temperature conductance in amorphous oxide transistors. At low temperatures, trap-limited conduction prevails, allowing extraction of the trapped carrier distribution with energy. Using a test device with a-InGaZnO channel layer, the extracted tail state energy and density at the conduction band minima are 20 meV and 2 × 10 19 cm -3 eV -1, respectively, which are consistent with values reported in the literature. Also, the field-effect mobility as a function of temperature from 77 K to 300 K is retrieved for different gate voltages, yielding the activation energy and the percolation threshold. © 2012 American Institute of Physics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Theoretical calculation of electronic energy levels of an asymmetric InAs/InGaAS/GaAS quantum-dots-in-a-well (DWELL) structure for infrared photodetectors is performed in the framework of effective-mass envelope-function theory. Our calculated results show that the electronic energy levels in quantum dots (QDs) increase when the asymmetry increases and the ground state energy increases faster than the excited state energies. Furthermore, the results also show that the electronic energy levels in QDs decrease as the size of QDs and the width of quantum well (QW) in the asymmetric DWELL structure increase. Additionally, the effects of asymmetry, the size of QDs and the width of QW on the response peak of asymmetry DWELL photodetectors are also discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Results are presented of high-resolution scattering experiments involving electron collisions with CO2 and CS2, between a few meV and 200 meV impact energy. Virtual state scattering is shown to dominate the low-energy behaviour for both species. The most striking features of the scattering spectrum for CS2 are, however, giant resonances with cross sections greater by more than an order of magnitude than those generally encountered in low-energy scattering. A strong feature centred at 15 meV is attributed to the involvement of CS2- and is interpreted to be a consequence of the virtual state effect.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Experimental data are presented for the scattering of cold electrons by CS2, for both integral and backward scattering, between a few meV and a few hundred meV impact energy. Giant resonances with cross sections in excess of 50 Angstrom(2) are observed below 100 meV, associated with the transient formation of CS2- at 15 meV and with the bend and symmetric stretch of CS2 at thresholds of 49 and 82 meV, respectively. The resonance at 49 meV is 2 orders of magnitude greater in cross section than a dipole impulsive model predicts. These structures are superimposed on a sharp rise in the scattering cross section at low energy, which may be attributed to virtual state scattering.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

South Carolina law (48-52-640) requires state agencies to submit a disclaimer statement to the State Energy Office with its annual report stating that it did not purchase an energy conservation product that had not been certified by the State Energy Office. This is a list of preapproved products, retrofits and upgrades.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Iowa Economic Development Authority (IEDA) Energy Office sets energy policy direction for Iowa and receives designated funding from the State Energy Program Formula from the Department of Energy to carry out designated energy activities. These activities include promoting energy efficiency, biofuels and renewable energy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We study the influence of ferromagnetic and antiferromagnetic bond defects on the ground-state energy of antiferromagnetic spin chains. In the absence of translational invariance, the energy spectrum of the full Hamiltonian is obtained numerically, by an iterative modi. cation of the power algorithm. In parallel, approximate analytical energies are obtained from a local-bond approximation, proposed here. This approximation results in significant improvement upon the mean-field approximation, at negligible extra computational effort. (C) 2008 Published by Elsevier B.V.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We derive an infinite set of conserved charges for some Z(N) symmetric quantum spin models by constructing their Lax pairs. These models correspond to the Potts model, Ashkin-Teller model and the particular set of self-dual Z(N) models solved by Fateev and Zamolodchikov [6]. The exact ground state energy for this last family of hamiltonians is also presented. © 1986.