981 resultados para Vibration (Marine engineering)
Resumo:
Numerical modeling of the interaction among waves and coastal structures is a challenge due to the many nonlinear phenomena involved, such as, wave propagation, wave transformation with water depth, interaction among incident and reflected waves, run-up / run-down and wave overtopping. Numerical models based on Lagrangian formulation, like SPH (Smoothed Particle Hydrodynamics), allow simulating complex free surface flows. The validation of these numerical models is essential, but comparing numerical results with experimental data is not an easy task. In the present paper, two SPH numerical models, SPHysics LNEC and SPH UNESP, are validated comparing the numerical results of waves interacting with a vertical breakwater, with data obtained in physical model tests made in one of the LNEC's flume. To achieve this validation, the experimental set-up is determined to be compatible with the Characteristics of the numerical models. Therefore, the flume dimensions are exactly the same for numerical and physical model and incident wave characteristics are identical, which allows determining the accuracy of the numerical models, particularly regarding two complex phenomena: wave-breaking and impact loads on the breakwater. It is shown that partial renormalization, i.e. renormalization applied only for particles near the structure, seems to be a promising compromise and an original method that allows simultaneously propagating waves, without diffusion, and modeling accurately the pressure field near the structure.
Resumo:
A high productivity rate in Engineering is related to an efficient management of the flow of the large quantities of information and associated decision making activities that are consubstantial to the Engineering processes both in design and production contexts. Dealing with such problems from an integrated point of view and mimicking real scenarios is not given much attention in Engineering degrees. In the context of Engineering Education, there are a number of courses designed for developing specific competencies, as required by the academic curricula, but not that many in which integration competencies are the main target. In this paper, a course devoted to that aim is discussed. The course is taught in a Marine Engineering degree but the philosophy could be used in any Engineering field. All the lessons are given in a computer room in which every student can use each all the treated software applications. The first part of the course is dedicated to Project Management: the students acquire skills in defining, using Ms-PROJECT, the work breakdown structure (WBS), and the organization breakdown structure (OBS) in Engineering projects, through a series of examples of increasing complexity, ending up with the case of vessel construction. The second part of the course is dedicated to the use of a database manager, Ms-ACCESS, for managing production related information. A series of increasing complexity examples is treated ending up with the management of the pipe database of a real vessel. This database consists of a few thousand of pipes, for which a production timing frame is defined, which connects this part of the course with the first one. Finally, the third part of the course is devoted to the work with FORAN, an Engineering Production package of widespread use in the shipbuilding industry. With this package, the frames and plates where all the outfitting will be carried out are defined through cooperative work by the studens, working simultaneously in the same 3D model. In the paper, specific details about the learning process are given. Surveys have been posed to the students in order to get feed-back from their experience as well as to assess their satisfaction with the learning process. Results from these surveys are discussed in the paper
Resumo:
Automatic Control Teaching in the new degree syllabus has reduced both, its contents and its implementation course, with regard to traditional engineering careers. On the other hand, where the qualification is not considered as automatic control specialist, it is required an adapted methodology to provide the minimum contents that the student needs to assimilate, even in the case that students do not perceive these contents as the most important in their future career. In this paper we present the contents of a small automatic course taught Naval Architecture and Marine Engineering Degrees at the School of Naval Engineering of the Polytechnic University of Madrid. We have included the contents covered using the proposed methodology which is based on practical work after lectures. Firstly, the students performed exercises by hand. Secondly, they solve the exercises using informatics support tools, and finally, they validate their previous results and their knowledge in the laboratory platforms.
Resumo:
Mode of access: Internet.
Resumo:
[v. 1] The Panama canal. 2 v.--[v. 2] Waterways and irrigation.--[v. 3] Municipal engineering.--[v. 4] Railway engineering.--[v. 5] Materials of engineering construction.--[v. 6] Mechanical engineering.--[v. 7] Electrical engineering and hydroelectric power development.--[v. 8] Mining engineering.--[v. 9] Metallurgy.--[v. 10] Naval architecture and marine engineering.--[v. 11] Miscellany.--[v. 12] Index volume.
Resumo:
Includes section "Book Reviews".
Resumo:
Interleaved.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
This paper investigates the automatic atti- tude and depth control of a torpedo shaped submarine. Both experimental results and dynamic simulations are used to tune feed- back control loops in order to obtain stable control of yaw, pitch and roll of the craft.
Resumo:
This thesis is concerned with the sloshing motion of water in a moonpool. It is a relatively new problem, that is particularly predominant in moonpools with relatively large dimensions. The problem is further complicated by the additional behaviour of vertical oscillation. It is inevitable that large moonpools will be needed as offshore technology advances, therefore making a problem an important one. The research involves two parts, the theoretical and experimental study. The theoretical study consists of idealising the moonpool to a two dimensional system, represented by two surface piercing parallel barriers at a distance 2a apart. The barriers are forced to undergo roll motion which in turn generates waves. These travelling waves are travelling in opposite directions to each other and have the same amplitude and period, and thus can be expressed in terms of a standing wave. This is mathematically achieved by applying the theory of wavemaking, and therefore the wave amplitude at the side wall can be evaluated at near resonant conditions. The experimental study comprises of comparing the results obtained from the tank and moonpool experiments. The rolling motion creates the sloshing waves in both cases, in addition the vertical oscillation in the moonpool is produced by generating waves at one end of the towing tank. Apart from highlighting influencing parameters, the resonant frequencies obtained from these experiments are then compared with the theoretical values. Experiments in demonstrating the effect of increasing damping with the aid of baffles are also conducted. This is an important aspect which is very necessary if operations in launching and retrieving are to be carried out efficiently and safely.