922 resultados para Viable systems model
Resumo:
The financial health of beef cattle enterprises in northern Australia has declined markedly over the last decade due to an escalation in production and marketing costs and a real decline in beef prices. Historically, gains in animal productivity have offset the effect of declining terms of trade on farm incomes. This raises the question of whether future productivity improvements can remain a key path for lifting enterprise profitability sufficient to ensure that the industry remains economically viable over the longer term. The key objective of this study was to assess the production and financial implications for north Australian beef enterprises of a range of technology interventions (development scenarios), including genetic gain in cattle, nutrient supplementation, and alteration of the feed base through introduced pastures and forage crops, across a variety of natural environments. To achieve this objective a beef systems model was developed that is capable of simulating livestock production at the enterprise level, including reproduction, growth and mortality, based on energy and protein supply from natural C4 pastures that are subject to high inter-annual climate variability. Comparisons between simulation outputs and enterprise performance data in three case study regions suggested that the simulation model (the Northern Australia Beef Systems Analyser) can adequately represent the performance beef cattle enterprises in northern Australia. Testing of a range of development scenarios suggested that the application of individual technologies can substantially lift productivity and profitability, especially where the entire feedbase was altered through legume augmentation. The simultaneous implementation of multiple technologies that provide benefits to different aspects of animal productivity resulted in the greatest increases in cattle productivity and enterprise profitability, with projected weaning rates increasing by 25%, liveweight gain by 40% and net profit by 150% above current baseline levels, although gains of this magnitude might not necessarily be realised in practice. While there were slight increases in total methane output from these development scenarios, the methane emissions per kg of beef produced were reduced by 20% in scenarios with higher productivity gain. Combinations of technologies or innovative practices applied in a systematic and integrated fashion thus offer scope for providing the productivity and profitability gains necessary to maintain viable beef enterprises in northern Australia into the future.
Resumo:
The aim of this thesis is to narrow the gap between two different control techniques: the continuous control and the discrete event control techniques DES. This gap can be reduced by the study of Hybrid systems, and by interpreting as Hybrid systems the majority of large-scale systems. In particular, when looking deeply into a process, it is often possible to identify interaction between discrete and continuous signals. Hybrid systems are systems that have both continuous, and discrete signals. Continuous signals are generally supposed continuous and differentiable in time, since discrete signals are neither continuous nor differentiable in time due to their abrupt changes in time. Continuous signals often represent the measure of natural physical magnitudes such as temperature, pressure etc. The discrete signals are normally artificial signals, operated by human artefacts as current, voltage, light etc. Typical processes modelled as Hybrid systems are production systems, chemical process, or continuos production when time and continuous measures interacts with the transport, and stock inventory system. Complex systems as manufacturing lines are hybrid in a global sense. They can be decomposed into several subsystems, and their links. Another motivation for the study of Hybrid systems is the tools developed by other research domains. These tools benefit from the use of temporal logic for the analysis of several properties of Hybrid systems model, and use it to design systems and controllers, which satisfies physical or imposed restrictions. This thesis is focused in particular types of systems with discrete and continuous signals in interaction. That can be modelled hard non-linealities, such as hysteresis, jumps in the state, limit cycles, etc. and their possible non-deterministic future behaviour expressed by an interpretable model description. The Hybrid systems treated in this work are systems with several discrete states, always less than thirty states (it can arrive to NP hard problem), and continuous dynamics evolving with expression: with Ki ¡ Rn constant vectors or matrices for X components vector. In several states the continuous evolution can be several of them Ki = 0. In this formulation, the mathematics can express Time invariant linear system. By the use of this expression for a local part, the combination of several local linear models is possible to represent non-linear systems. And with the interaction with discrete events of the system the model can compose non-linear Hybrid systems. Especially multistage processes with high continuous dynamics are well represented by the proposed methodology. Sate vectors with more than two components, as third order models or higher is well approximated by the proposed approximation. Flexible belt transmission, chemical reactions with initial start-up and mobile robots with important friction are several physical systems, which profits from the benefits of proposed methodology (accuracy). The motivation of this thesis is to obtain a solution that can control and drive the Hybrid systems from the origin or starting point to the goal. How to obtain this solution, and which is the best solution in terms of one cost function subject to the physical restrictions and control actions is analysed. Hybrid systems that have several possible states, different ways to drive the system to the goal and different continuous control signals are problems that motivate this research. The requirements of the system on which we work is: a model that can represent the behaviour of the non-linear systems, and that possibilities the prediction of possible future behaviour for the model, in order to apply an supervisor which decides the optimal and secure action to drive the system toward the goal. Specific problems can be determined by the use of this kind of hybrid models are: - The unity of order. - Control the system along a reachable path. - Control the system in a safe path. - Optimise the cost function. - Modularity of control The proposed model solves the specified problems in the switching models problem, the initial condition calculus and the unity of the order models. Continuous and discrete phenomena are represented in Linear hybrid models, defined with defined eighth-tuple parameters to model different types of hybrid phenomena. Applying a transformation over the state vector : for LTI system we obtain from a two-dimensional SS a single parameter, alpha, which still maintains the dynamical information. Combining this parameter with the system output, a complete description of the system is obtained in a form of a graph in polar representation. Using Tagaki-Sugeno type III is a fuzzy model which include linear time invariant LTI models for each local model, the fuzzyfication of different LTI local model gives as a result a non-linear time invariant model. In our case the output and the alpha measure govern the membership function. Hybrid systems control is a huge task, the processes need to be guided from the Starting point to the desired End point, passing a through of different specific states and points in the trajectory. The system can be structured in different levels of abstraction and the control in three layers for the Hybrid systems from planning the process to produce the actions, these are the planning, the process and control layer. In this case the algorithms will be applied to robotics ¡V a domain where improvements are well accepted ¡V it is expected to find a simple repetitive processes for which the extra effort in complexity can be compensated by some cost reductions. It may be also interesting to implement some control optimisation to processes such as fuel injection, DC-DC converters etc. In order to apply the RW theory of discrete event systems on a Hybrid system, we must abstract the continuous signals and to project the events generated for these signals, to obtain new sets of observable and controllable events. Ramadge & Wonham¡¦s theory along with the TCT software give a Controllable Sublanguage of the legal language generated for a Discrete Event System (DES). Continuous abstraction transforms predicates over continuous variables into controllable or uncontrollable events, and modifies the set of uncontrollable, controllable observable and unobservable events. Continuous signals produce into the system virtual events, when this crosses the bound limits. If this event is deterministic, they can be projected. It is necessary to determine the controllability of this event, in order to assign this to the corresponding set, , controllable, uncontrollable, observable and unobservable set of events. Find optimal trajectories in order to minimise some cost function is the goal of the modelling procedure. Mathematical model for the system allows the user to apply mathematical techniques over this expression. These possibilities are, to minimise a specific cost function, to obtain optimal controllers and to approximate a specific trajectory. The combination of the Dynamic Programming with Bellman Principle of optimality, give us the procedure to solve the minimum time trajectory for Hybrid systems. The problem is greater when there exists interaction between adjacent states. In Hybrid systems the problem is to determine the partial set points to be applied at the local models. Optimal controller can be implemented in each local model in order to assure the minimisation of the local costs. The solution of this problem needs to give us the trajectory to follow the system. Trajectory marked by a set of set points to force the system to passing over them. Several ways are possible to drive the system from the Starting point Xi to the End point Xf. Different ways are interesting in: dynamic sense, minimum states, approximation at set points, etc. These ways need to be safe and viable and RchW. And only one of them must to be applied, normally the best, which minimises the proposed cost function. A Reachable Way, this means the controllable way and safe, will be evaluated in order to obtain which one minimises the cost function. Contribution of this work is a complete framework to work with the majority Hybrid systems, the procedures to model, control and supervise are defined and explained and its use is demonstrated. Also explained is the procedure to model the systems to be analysed for automatic verification. Great improvements were obtained by using this methodology in comparison to using other piecewise linear approximations. It is demonstrated in particular cases this methodology can provide best approximation. The most important contribution of this work, is the Alpha approximation for non-linear systems with high dynamics While this kind of process is not typical, but in this case the Alpha approximation is the best linear approximation to use, and give a compact representation.
Resumo:
Organizational intelligence can be seen as a function of the viable structure of an organization. With the integration of the Viable System Model and Soft Systems Methodology (systemic approaches of organizational management) focused on the role of the intelligence function, it is possible to elaborate a model of action with a structured methodology to prospect, select, treat and distribute information to the entire organization that improves the efficacy and efficiency of all processes. This combination of methodologies is called Intelligence Systems Methodology (ISM) whose assumptions and dynamics are delimited in this paper. The ISM is composed of two simultaneous activities: the Active Environmental Mapping and the Stimulated Action Cycle. The elaboration of the formal ISM description opens opportunities for applications of the methodology on real situations, offering a new path for this specific issue of systems thinking: the intelligence systems. Knowledge Management Research & Practice (2012) 10, 141-152. doi:10.1057/kmrp.2011.44
Resumo:
Emotion is generally argued to be an influence on the behavior of life systems, largely concerning flexibility and adaptivity. The way in which life systems acts in response to a particular situations of the environment, has revealed the decisive and crucial importance of this feature in the success of behaviors. And this source of inspiration has influenced the way of thinking artificial systems. During the last decades, artificial systems have undergone such an evolution that each day more are integrated in our daily life. They have become greater in complexity, and the subsequent effects are related to an increased demand of systems that ensure resilience, robustness, availability, security or safety among others. All of them questions that raise quite a fundamental challenges in control design. This thesis has been developed under the framework of the Autonomous System project, a.k.a the ASys-Project. Short-term objectives of immediate application are focused on to design improved systems, and the approaching of intelligence in control strategies. Besides this, long-term objectives underlying ASys-Project concentrate on high order capabilities such as cognition, awareness and autonomy. This thesis is placed within the general fields of Engineery and Emotion science, and provides a theoretical foundation for engineering and designing computational emotion for artificial systems. The starting question that has grounded this thesis aims the problem of emotion--based autonomy. And how to feedback systems with valuable meaning has conformed the general objective. Both the starting question and the general objective, have underlaid the study of emotion, the influence on systems behavior, the key foundations that justify this feature in life systems, how emotion is integrated within the normal operation, and how this entire problem of emotion can be explained in artificial systems. By assuming essential differences concerning structure, purpose and operation between life and artificial systems, the essential motivation has been the exploration of what emotion solves in nature to afterwards analyze analogies for man--made systems. This work provides a reference model in which a collection of entities, relationships, models, functions and informational artifacts, are all interacting to provide the system with non-explicit knowledge under the form of emotion-like relevances. This solution aims to provide a reference model under which to design solutions for emotional operation, but related to the real needs of artificial systems. The proposal consists of a multi-purpose architecture that implement two broad modules in order to attend: (a) the range of processes related to the environment affectation, and (b) the range or processes related to the emotion perception-like and the higher levels of reasoning. This has required an intense and critical analysis beyond the state of the art around the most relevant theories of emotion and technical systems, in order to obtain the required support for those foundations that sustain each model. The problem has been interpreted and is described on the basis of AGSys, an agent assumed with the minimum rationality as to provide the capability to perform emotional assessment. AGSys is a conceptualization of a Model-based Cognitive agent that embodies an inner agent ESys, the responsible of performing the emotional operation inside of AGSys. The solution consists of multiple computational modules working federated, and aimed at conforming a mutual feedback loop between AGSys and ESys. Throughout this solution, the environment and the effects that might influence over the system are described as different problems. While AGSys operates as a common system within the external environment, ESys is designed to operate within a conceptualized inner environment. And this inner environment is built on the basis of those relevances that might occur inside of AGSys in the interaction with the external environment. This allows for a high-quality separate reasoning concerning mission goals defined in AGSys, and emotional goals defined in ESys. This way, it is provided a possible path for high-level reasoning under the influence of goals congruence. High-level reasoning model uses knowledge about emotional goals stability, letting this way new directions in which mission goals might be assessed under the situational state of this stability. This high-level reasoning is grounded by the work of MEP, a model of emotion perception that is thought as an analogy of a well-known theory in emotion science. The work of this model is described under the operation of a recursive-like process labeled as R-Loop, together with a system of emotional goals that are assumed as individual agents. This way, AGSys integrates knowledge that concerns the relation between a perceived object, and the effect which this perception induces on the situational state of the emotional goals. This knowledge enables a high-order system of information that provides the sustain for a high-level reasoning. The extent to which this reasoning might be approached is just delineated and assumed as future work. This thesis has been studied beyond a long range of fields of knowledge. This knowledge can be structured into two main objectives: (a) the fields of psychology, cognitive science, neurology and biological sciences in order to obtain understanding concerning the problem of the emotional phenomena, and (b) a large amount of computer science branches such as Autonomic Computing (AC), Self-adaptive software, Self-X systems, Model Integrated Computing (MIC) or the paradigm of models@runtime among others, in order to obtain knowledge about tools for designing each part of the solution. The final approach has been mainly performed on the basis of the entire acquired knowledge, and described under the fields of Artificial Intelligence, Model-Based Systems (MBS), and additional mathematical formalizations to provide punctual understanding in those cases that it has been required. This approach describes a reference model to feedback systems with valuable meaning, allowing for reasoning with regard to (a) the relationship between the environment and the relevance of the effects on the system, and (b) dynamical evaluations concerning the inner situational state of the system as a result of those effects. And this reasoning provides a framework of distinguishable states of AGSys derived from its own circumstances, that can be assumed as artificial emotion.
Resumo:
Research in safety management has been inhibited by lack of consensus as to the definitions of the terms with which it is concerned and, in general, the lack of an agreed theoretical framework within which to collate and contrast empirical findings. This thesis sets out definitions of key terms (hazard, risk, accident, incident and safety) and provides a theoretical framework. This framework has been informed by many sources but especially the Management Oversight and Risk Tree (MORT), cybernetics and the Viable System Model (VSM). Fieldwork designs are proposed for the empirical development of an analytical framework and its use to assist study of the development of safety management in organisations.
Resumo:
The purpose of the current paper is to present the developed methodology of viable model based enterprise management, which is needed for modern enterprises to survive and growth in the information age century. The approach is based on Beer’s viable system model and uses it as a basis of the information technology implementation and development. The enterprise is viewed as a cybernetic system which functioning is controlled from the same rules as for every living system.
Resumo:
Virtual-Build-to-Order (VBTO) is an emerging order fulfilment system within the automotive sector that is intended to improve fulfilment performance by taking advantage of integrated information systems. The primary innovation in VBTO systems is the ability to make available all unsold products that are in the production pipeline to all customers. In a conventional system the pipeline is inaccessible and a customer can be fulfilled by a product from stock or having a product Built-to-Order (BTO), whereas in a VBTO system a customer can be fulfilled by a product from stock, by being allocated a product in the pipeline, or by a build-to-order product. Simulation is used to investigate and profile the fundamental behaviour of the basic VBTO system and to compare it to a Conventional system. A predictive relationship is identified, between the proportions of customers fulfilled through each mechanism and the ratio of product variety / pipeline length. The simulations reveal that a VBTO system exhibits inherent behaviour that alters the stock mix and levels, leading to stock levels being higher than in an equivalent conventional system at certain variety / pipeline ratios. The results have implications for the design and management of order fulfilment systems in sectors such as automotive where VBTO is a viable operational model.
Resumo:
This work is a digital version of a dissertation that was first submitted in partial fulfillment of the Degree of Doctor of Philosophy at the Queensland University of Technology (QUT) in March 1994. The work was concerned with problems of self-organisation and organisation ranging from local to global levels of hierarchy. It considers organisations as living entities from local to global things that a living entity – more particularly, an individual, a body corporate or a body politic - must know and do to maintain an existence – that is to remain viable – or to be sustainable. The term ‘land management’ as used in 1994 was later subsumed into a more general concept of ‘natural resource management’ and then merged with ideas about sustainable socioeconomic and sustainable ecological development. The cybernetic approach contains many cognitive elements of human observation, language and learning that combine into production processes. The approach tends to highlight instances where systems (or organisations) can fail because they have very little chance of succeeding. Thus there are logical necessities as well as technical possibilities in designing, constructing, operating and maintaining production systems that function reliably over extended periods. Chapter numbers and titles to the original thesis are as follows: 1. Land management as a problem of coping with complexity 2. Background theory in systems theory and cybernetic principles 3. Operationalisation of cybernetic principles in Beer’s Viable System Model 4. Issues in the design of viable cadastral surveying and mapping organisation 5. An analysis of the tendency for fragmentation in surveying and mapping organisation 6. Perambulating the boundaries of Sydney – a problem of social control under poor standards of literacy 7. Cybernetic principles in the process of legislation 8. Closer settlement policy and viability in agricultural production 9. Rate of return in leasing Crown lands
Resumo:
Business practices vary from one company to another and business practices often need to be changed due to changes of business environments. To satisfy different business practices, enterprise systems need to be customized. To keep up with ongoing business practice changes, enterprise systems need to be adapted. Because of rigidity and complexity, the customization and adaption of enterprise systems often takes excessive time with potential failures and budget shortfall. Moreover, enterprise systems often drag business behind because they cannot be rapidly adapted to support business practice changes. Extensive literature has addressed this issue by identifying success or failure factors, implementation approaches, and project management strategies. Those efforts were aimed at learning lessons from post implementation experiences to help future projects. This research looks into this issue from a different angle. It attempts to address this issue by delivering a systematic method for developing flexible enterprise systems which can be easily tailored for different business practices or rapidly adapted when business practices change. First, this research examines the role of system models in the context of enterprise system development; and the relationship of system models with software programs in the contexts of computer aided software engineering (CASE), model driven architecture (MDA) and workflow management system (WfMS). Then, by applying the analogical reasoning method, this research initiates a concept of model driven enterprise systems. The novelty of model driven enterprise systems is that it extracts system models from software programs and makes system models able to stay independent of software programs. In the paradigm of model driven enterprise systems, system models act as instructors to guide and control the behavior of software programs. Software programs function by interpreting instructions in system models. This mechanism exposes the opportunity to tailor such a system by changing system models. To make this true, system models should be represented in a language which can be easily understood by human beings and can also be effectively interpreted by computers. In this research, various semantic representations are investigated to support model driven enterprise systems. The significance of this research is 1) the transplantation of the successful structure for flexibility in modern machines and WfMS to enterprise systems; and 2) the advancement of MDA by extending the role of system models from guiding system development to controlling system behaviors. This research contributes to the area relevant to enterprise systems from three perspectives: 1) a new paradigm of enterprise systems, in which enterprise systems consist of two essential elements: system models and software programs. These two elements are loosely coupled and can exist independently; 2) semantic representations, which can effectively represent business entities, entity relationships, business logic and information processing logic in a semantic manner. Semantic representations are the key enabling techniques of model driven enterprise systems; and 3) a brand new role of system models; traditionally the role of system models is to guide developers to write system source code. This research promotes the role of system models to control the behaviors of enterprise.
Resumo:
We study model selection strategies based on penalized empirical loss minimization. We point out a tight relationship between error estimation and data-based complexity penalization: any good error estimate may be converted into a data-based penalty function and the performance of the estimate is governed by the quality of the error estimate. We consider several penalty functions, involving error estimates on independent test data, empirical VC dimension, empirical VC entropy, and margin-based quantities. We also consider the maximal difference between the error on the first half of the training data and the second half, and the expected maximal discrepancy, a closely related capacity estimate that can be calculated by Monte Carlo integration. Maximal discrepancy penalty functions are appealing for pattern classification problems, since their computation is equivalent to empirical risk minimization over the training data with some labels flipped.
Resumo:
Articular cartilage is a complex structure with an architecture in which fluid-swollen proteoglycans constrained within a 3D network of collagen fibrils. Because of the complexity of the cartilage structure, the relationship between its mechanical behaviours at the macroscale level and its components at the micro-scale level are not completely understood. The research objective in this thesis is to create a new model of articular cartilage that can be used to simulate and obtain insight into the micro-macro-interaction and mechanisms underlying its mechanical responses during physiological function. The new model of articular cartilage has two characteristics, namely: i) not use fibre-reinforced composite material idealization ii) Provide a framework for that it does probing the micro mechanism of the fluid-solid interaction underlying the deformation of articular cartilage using simple rules of repartition instead of constitutive / physical laws and intuitive curve-fitting. Even though there are various microstructural and mechanical behaviours that can be studied, the scope of this thesis is limited to osmotic pressure formation and distribution and their influence on cartilage fluid diffusion and percolation, which in turn governs the deformation of the compression-loaded tissue. The study can be divided into two stages. In the first stage, the distributions and concentrations of proteoglycans, collagen and water were investigated using histological protocols. Based on this, the structure of cartilage was conceptualised as microscopic osmotic units that consist of these constituents that were distributed according to histological results. These units were repeated three-dimensionally to form the structural model of articular cartilage. In the second stage, cellular automata were incorporated into the resulting matrix (lattice) to simulate the osmotic pressure of the fluid and the movement of water within and out of the matrix; following the osmotic pressure gradient in accordance with the chosen rule of repartition of the pressure. The outcome of this study is the new model of articular cartilage that can be used to simulate and study the micromechanical behaviours of cartilage under different conditions of health and loading. These behaviours are illuminated at the microscale level using the socalled neighbourhood rules developed in the thesis in accordance with the typical requirements of cellular automata modelling. Using these rules and relevant Boundary Conditions to simulate pressure distribution and related fluid motion produced significant results that provided the following insight into the relationships between osmotic pressure gradient and associated fluid micromovement, and the deformation of the matrix. For example, it could be concluded that: 1. It is possible to model articular cartilage with the agent-based model of cellular automata and the Margolus neighbourhood rule. 2. The concept of 3D inter connected osmotic units is a viable structural model for the extracellular matrix of articular cartilage. 3. Different rules of osmotic pressure advection lead to different patterns of deformation in the cartilage matrix, enabling an insight into how this micromechanism influences macromechanical deformation. 4. When features such as transition coefficient were changed, permeability (representing change) is altered due to the change in concentrations of collagen, proteoglycans (i.e. degenerative conditions), the deformation process is impacted. 5. The boundary conditions also influence the relationship between osmotic pressure gradient and fluid movement at the micro-scale level. The outcomes are important to cartilage research since we can use these to study the microscale damage in the cartilage matrix. From this, we are able to monitor related diseases and their progression leading to potential insight into drug-cartilage interaction for treatment. This innovative model is an incremental progress on attempts at creating further computational modelling approaches to cartilage research and other fluid-saturated tissues and material systems.
Resumo:
Validation is an important issue in the development and application of Bayesian Belief Network (BBN) models, especially when the outcome of the model cannot be directly observed. Despite this, few frameworks for validating BBNs have been proposed and fewer have been applied to substantive real-world problems. In this paper we adopt the approach by Pitchforth and Mengersen (2013), which includes nine validation tests that each focus on the structure, discretisation, parameterisation and behaviour of the BBNs included in the case study. We describe the process and result of implementing a validation framework on a model of a real airport terminal system with particular reference to its effectiveness in producing a valid model that can be used and understood by operational decision makers. In applying the proposed validation framework we demonstrate the overall validity of the Inbound Passenger Facilitation Model as well as the effectiveness of the validity framework itself.
Resumo:
In the coming decades, the mining industry faces the dual challenge of lowering both its water and energy use. This presents a difficulty since technological advances that decrease the use of one can increase the use of the other. Historically, energy and water use have been modelled independently, making it difficult to evaluate the true costs and benefits from water and energy improvements. This paper presents a hierarchical systems model that is able to represent interconnected water and energy use at a whole of site scale. In order to explore the links between water and energy four technologies advancements have been modelled: use of dust suppression additives, the adoption of thickened tailings, the transition to dry processing and the incorporation of a treatment plant. The results show a synergy between decreased water and energy use for dust suppression additives, but a trade-off for the others.
Resumo:
Utilities worldwide are focused on supplying peak electricity demand reliably and cost effectively, requiring a thorough understanding of all the factors influencing residential electricity use at peak times. An electricity demand reduction project based on comprehensive residential consumer engagement was established within an Australian community in 2008, and by 2011, peak demand had decreased to below pre-intervention levels. This paper applied field data discovered through qualitative in-depth interviews of 22 residential households at the community to a Bayesian Network complex system model to examine whether the system model could explain successful peak demand reduction in the case study location. The knowledge and understanding acquired through insights into the major influential factors and the potential impact of changes to these factors on peak demand would underpin demand reduction intervention strategies for a wider target group.