953 resultados para Versatile Nonlinear Model
Resumo:
We suggest a variant of the nonlinear σ model for the description of disordered superconductors. The main distinction from existing models lies in the fact that the saddle point equation is solved nonperturbatively in the superconducting pairing field. It allows one to use the model both in the vicinity of the metal-superconductor transition and well below its critical temperature with full account for the self-consistency conditions. We show that the model reproduces a set of known results in different limiting cases, and apply it for a self-consistent description of the proximity effect at the superconductor-metal interface.
Resumo:
This paper is partially supported by the Bulgarian Science Fund under grant Nr. DO 02– 359/2008.
Resumo:
Centrifuge experiments modeling single-phase flow in prototype porous media typically use the same porous medium and permeant. Then, well-known scaling laws are used to transfer the results to the prototype. More general scaling laws that relax these restrictions are presented. For permeants that are immiscible with an accompanying gas phase, model-prototype (i.e., centrifuge model experiment-target system) scaling is demonstrated. Scaling is shown to be feasible for Miller-similar (or geometrically similar) media. Scalings are presented for a more, general class, Lisle-similar media, based on the equivalence mapping of Richards' equation onto itself. Whereas model-prototype scaling of Miller-similar media can be realized easily for arbitrary boundary conditions, Lisle-similarity in a finite length medium generally, but not always, involves a mapping to a moving boundary problem. An exception occurs for redistribution in Lisle-similar porous media, which is shown to map to spatially fixed boundary conditions. Complete model-prototype scalings for this example are derived.
Resumo:
[1] We attempt to generate new solutions for the moisture content form of the one-dimensional Richards' [1931] equation using the Lisle [1992] equivalence mapping. This mapping is used as no more general set of transformations exists for mapping the one-dimensional Richards' equation into itself. Starting from a given solution, the mapping has the potential to generate an infinite number of new solutions for a series of nonlinear diffusivity and hydraulic conductivity functions. We first seek new analytical solutions satisfying Richards' equation subject to a constant flux surface boundary condition for a semi-infinite dry soil, starting with the Burgers model. The first iteration produces an existing solution, while subsequent iterations are shown to endlessly reproduce this same solution. Next, we briefly consider the problem of redistribution in a finite-length soil. In this case, Lisle's equivalence mapping is generalized to account for arbitrary initial conditions. As was the case for infiltration, however, it is found that new analytical solutions are not generated using the equivalence mapping, although existing solutions are recovered.
Resumo:
Nature is full of phenomena which we call "chaotic", the weather being a prime example. What we mean by this is that we cannot predict it to any significant accuracy, either because the system is inherently complex, or because some of the governing factors are not deterministic. However, during recent years it has become clear that random behaviour can occur even in very simple systems with very few number of degrees of freedom, without any need for complexity or indeterminacy. The discovery that chaos can be generated even with the help of systems having completely deterministic rules - often models of natural phenomena - has stimulated a lo; of research interest recently. Not that this chaos has no underlying order, but it is of a subtle kind, that has taken a great deal of ingenuity to unravel. In the present thesis, the author introduce a new nonlinear model, a ‘modulated’ logistic map, and analyse it from the view point of ‘deterministic chaos‘.
Resumo:
Trabecular bone is a porous mineralized tissue playing a major load bearing role in the human body. Prediction of age-related and disease-related fractures and the behavior of bone implant systems needs a thorough understanding of its structure-mechanical property relationships, which can be obtained using microcomputed tomography-based finite element modeling. In this study, a nonlinear model for trabecular bone as a cohesive-frictional material was implemented in a large-scale computational framework and validated by comparison of μFE simulations with experimental tests in uniaxial tension and compression. A good correspondence of stiffness and yield points between simulations and experiments was found for a wide range of bone volume fraction and degree of anisotropy in both tension and compression using a non-calibrated, average set of material parameters. These results demonstrate the ability of the model to capture the effects leading to failure of bone for three anatomical sites and several donors, which may be used to determine the apparent behavior of trabecular bone and its evolution with age, disease, and treatment in the future.
Resumo:
Feature detection is a crucial stage of visual processing. In previous feature-marking experiments we found that peaks in the 3rd derivative of the luminance profile can signify edges where there are no 1st derivative peaks nor 2nd derivative zero-crossings (Wallis and George 'Mach edges' (the edges of Mach bands) were nicely predicted by a new nonlinear model based on 3rd derivative filtering. As a critical test of the model, we now use a new class of stimuli, formed by adding a linear luminance ramp to the blurred triangle waves used previously. The ramp has no effect on the second or higher derivatives, but the nonlinear model predicts a shift from seeing two edges to seeing only one edge as the added ramp gradient increases. In experiment 1, subjects judged whether one or two edges were visible on each trial. In experiment 2, subjects used a cursor to mark perceived edges and bars. The position and polarity of the marked edges were close to model predictions. Both experiments produced the predicted shift from two to one Mach edge, but the shift was less complete than predicted. We conclude that the model is a useful predictor of edge perception, but needs some modification.
Resumo:
A dynamic modelling methodology, which combines on-line variable estimation and parameter identification with physical laws to form an adaptive model for rotary sugar drying processes, is developed in this paper. In contrast to the conventional rate-based models using empirical transfer coefficients, the heat and mass transfer rates are estimated by using on-line measurements in the new model. Furthermore, a set of improved sectional solid transport equations with localized parameters is developed in this work to reidentified on-line using measurement data, the model is able to closely track the dynamic behaviour of rotary drying processes within a broad range of operational conditions. This adaptive model is validated against experimental data obtained from a pilot-scale rotary sugar dryer. The proposed modelling methodology can be easily incorporated into nonlinear model based control schemes to form a unified modelling and control framework.place the global correlation for the computation of solid retention time. Since a number of key model variables and parameters are identified on-line using measurement data, the model is able to closely track the dynamic behaviour of rotary drying processes within a broad range of operational conditions. This adaptive model is validated against experimental data obtained from a pilot-scale rotary sugar dryer. The proposed modelling methodology can be easily incorporated into nonlinear model based control schemes to form a unified modelling and control framework.
Resumo:
Dragonflies show unique and superior flight performances than most of other insect species and birds. They are equipped with two pairs of independently controlled wings granting an unmatchable flying performance and robustness. In this paper, it is presented an adaptive scheme controlling a nonlinear model inspired in a dragonfly-like robot. It is proposed a hybrid adaptive (HA) law for adjusting the parameters analyzing the tracking error. At the current stage of the project it is considered essential the development of computational simulation models based in the dynamics to test whether strategies or algorithms of control, parts of the system (such as different wing configurations, tail) as well as the complete system. The performance analysis proves the superiority of the HA law over the direct adaptive (DA) method in terms of faster and improved tracking and parameter convergence.
Resumo:
The determination of characteristic cardiac parameters, such as displacement, stress and strain distribution are essential for an understanding of the mechanics of the heart. The calculation of these parameters has been limited until recently by the use of idealised mathematical representations of biventricular geometries and by applying simple material laws. On the basis of 20 short axis heart slices and in consideration of linear and nonlinear material behaviour we have developed a FE model with about 100,000 degrees of freedom. Marching Cubes and Phong's incremental shading technique were used to visualise the three dimensional geometry. In a quasistatic FE analysis continuous distribution of regional stress and strain corresponding to the endsystolic state were calculated. Substantial regional variation of the Von Mises stress and the total strain energy were observed at all levels of the heart model. The results of both the linear elastic model and the model with a nonlinear material description (Mooney-Rivlin) were compared. While the stress distribution and peak stress values were found to be comparable, the displacement vectors obtained with the nonlinear model were generally higher in comparison with the linear elastic case indicating the need to include nonlinear effects.
Resumo:
The coupling between topography, waves and currents in the surf zone may selforganize to produce the formation of shore-transverse or shore-oblique sand bars on an otherwise alongshore uniform beach. In the absence of shore-parallel bars, this has been shown by previous studies of linear stability analysis, but is now extended to the finite-amplitude regime. To this end, a nonlinear model coupling wave transformation and breaking, a shallow-water equations solver, sediment transport and bed updating is developed. The sediment flux consists of a stirring factor multiplied by the depthaveraged current plus a downslope correction. It is found that the cross-shore profile of the ratio of stirring factor to water depth together with the wave incidence angle primarily determine the shape and the type of bars, either transverse or oblique to the shore. In the latter case, they can open an acute angle against the current (upcurrent oriented) or with the current (down-current oriented). At the initial stages of development, both the intensity of the instability which is responsible for the formation of the bars and the damping due to downslope transport grow at a similar rate with bar amplitude, the former being somewhat stronger. As bars keep on growing, their finite-amplitude shape either enhances downslope transport or weakens the instability mechanism so that an equilibrium between both opposing tendencies occurs, leading to a final saturated amplitude. The overall shape of the saturated bars in plan view is similar to that of the small-amplitude ones. However, the final spacings may be up to a factor of 2 larger and final celerities can also be about a factor of 2 smaller or larger. In the case of alongshore migrating bars, the asymmetry of the longshore sections, the lee being steeper than the stoss, is well reproduced. Complex dynamics with merging and splitting of individual bars sometimes occur. Finally, in the case of shore-normal incidence the rip currents in the troughs between the bars are jet-like while the onshore return flow is wider and weaker as is observed in nature.
Resumo:
We develop the linearization of a semi-implicit semi-Lagrangian model of the one-dimensional shallow-water equations using two different methods. The usual tangent linear model, formed by linearizing the discrete nonlinear model, is compared with a model formed by first linearizing the continuous nonlinear equations and then discretizing. Both models are shown to perform equally well for finite perturbations. However, the asymptotic behaviour of the two models differs as the perturbation size is reduced. This leads to difficulties in showing that the models are correctly coded using the standard tests. To overcome this difficulty we propose a new method for testing linear models, which we demonstrate both theoretically and numerically. © Crown copyright, 2003. Royal Meteorological Society
Resumo:
Dynamic neural networks (DNNs), which are also known as recurrent neural networks, are often used for nonlinear system identification. The main contribution of this letter is the introduction of an efficient parameterization of a class of DNNs. Having to adjust less parameters simplifies the training problem and leads to more parsimonious models. The parameterization is based on approximation theory dealing with the ability of a class of DNNs to approximate finite trajectories of nonautonomous systems. The use of the proposed parameterization is illustrated through a numerical example, using data from a nonlinear model of a magnetic levitation system.
Resumo:
A solution has been found to the long-standing problem of experimental modelling of the interfacial instability in aluminium reduction cells. The idea is to replace the electrolyte overlaying molten aluminium with a mesh of thin rods supplying current down directly into the liquid metal layer. This eliminates electrolysis altogether and all the problems associated with it, such as high temperature, chemical aggressiveness of media, products of electrolysis, the necessity for electrolyte renewal, high power demands, etc. The result is a room temperature, versatile laboratory model which simulates Sele-type, rolling pad interfacial instability. Our new, safe laboratory model enables detailed experimental investigations to test the existing theoretical models for the first time.
Resumo:
DISOPE is a technique for solving optimal control problems where there are differences in structure and parameter values between reality and the model employed in the computations. The model reality differences can also allow for deliberate simplification of model characteristics and performance indices in order to facilitate the solution of the optimal control problem. The technique was developed originally in continuous time and later extended to discrete time. The main property of the procedure is that by iterating on appropriately modified model based problems the correct optimal solution is achieved in spite of the model-reality differences. Algorithms have been developed in both continuous and discrete time for a general nonlinear optimal control problem with terminal weighting, bounded controls and terminal constraints. The aim of this paper is to show how the DISOPE technique can aid receding horizon optimal control computation in nonlinear model predictive control.