919 resultados para Vehicle to grid (V2G)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the continued development of renewable energy generation technologies and increasing pressure to combat the global effects of greenhouse warming, plug-in hybrid electric vehicles (PHEVs) have received worldwide attention, finding applications in North America and Europe. When a large number of PHEVs are introduced into a power system, there will be extensive impacts on power system planning and operation, as well as on electricity market development. It is therefore necessary to properly control PHEV charging and discharging behaviors. Given this background, a new unit commitment model and its solution method that takes into account the optimal PHEV charging and discharging controls is presented in this paper. A 10-unit and 24-hour unit commitment (UC) problem is employed to demonstrate the feasibility and efficiency of the developed method, and the impacts of the wide applications of PHEVs on the operating costs and the emission of the power system are studied. Case studies are also carried out to investigate the impacts of different PHEV penetration levels and different PHEV charging modes on the results of the UC problem. A 100-unit system is employed for further analysis on the impacts of PHEVs on the UC problem in a larger system application. Simulation results demonstrate that the employment of optimized PHEV charging and discharging modes is very helpful for smoothing the load curve profile and enhancing the ability of the power system to accommodate more PHEVs. Furthermore, an optimal Vehicle to Grid (V2G) discharging control provides economic and efficient backups and spinning reserves for the secure and economic operation of the power system

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plug-in electric vehicles (PEVs) are increasingly popular in the global trend of energy saving and environmental protection. However, the uncoordinated charging of numerous PEVs can produce significant negative impacts on the secure and economic operation of the power system concerned. In this context, a hierarchical decomposition approach is presented to coordinate the charging/discharging behaviors of PEVs. The major objective of the upper-level model is to minimize the total cost of system operation by jointly dispatching generators and electric vehicle aggregators (EVAs). On the other hand, the lower-level model aims at strictly following the dispatching instructions from the upper-level decision-maker by designing appropriate charging/discharging strategies for each individual PEV in a specified dispatching period. Two highly efficient commercial solvers, namely AMPL/IPOPT and AMPL/CPLEX, respectively, are used to solve the developed hierarchical decomposition model. Finally, a modified IEEE 118-bus testing system including 6 EVAs is employed to demonstrate the performance of the developed model and method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bidirectional Inductive Power Transfer (IPT) systems are preferred for Vehicle-to-Grid (V2G) applications. Typically, bidirectional IPT systems consist of high order resonant networks, and therefore, the control of bidirectional IPT systems has always been a difficulty. To date several different controllers have been reported, but these have been designed using steady-state models, which invariably, are incapable of providing an accurate insight into the dynamic behaviour of the system A dynamic state-space model of a bidirectional IPT system has been reported. However, currently this model has not been used to optimise the design of controllers. Therefore, this paper proposes an optimised controller based on the dynamic model. To verify the operation of the proposed controller simulated results of the optimised controller and simulated results of another controller are compared. Results indicate that the proposed controller is capable of accurately and stably controlling the power flow in a bidirectional IPT system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large scale solar plants are gaining recognition as potential energy sources for future. In this paper, the feasibility of using electric vehicles (EVs) to control a solar powered micro-grid is investigated in detail. The paper presents a PSCAD/EMTDC based model for the solar powered micro-grid with EVs. EVs are expected to have both the vehicle-to-grid (V2G) and grid-to-vehicle (G2V) capability, through which energy can either be injected into or extracted from the solar powered micro-grid to control its energy imbalance. Using the model, the behaviour of the micro-grid is investigated under a given load profile, and the results indicate that a minimum number of EVs are required to meet the energy imbalance and it is time dependent and influenced by various factors such as depth of charge, commuting profiles, reliability etc...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unidirectional inductive power transfer (UIPT) systems allow loads to consume power while bidirectional IPT (BIPT) systems are more suitable for loads requiring two way power flow such as vehicle to grid (V2G) applications with electric vehicles (EVs). Many attempts have been made to improve the performance of BIPT systems. In a typical BIPT system, the output power is control using the pickup converter phase shift angle (PSA) while the primary converter regulates the input current. This paper proposes an optimized phase shift modulation strategy to minimize the coil losses of a series – series (SS) compensated BIPT system. In addition, a comprehensive study on the impact of power converters on the overall efficiency of the system is also presented. A closed loop controller is proposed to optimize the overall efficiency of the BIPT system. Theoretical results are presented in comparison to both simulations and measurements of a 0.5 kW prototype to show the benefits of the proposed concept. Results convincingly demonstrate the applicability of the proposed system offering high efficiency over a wide range of output power.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electric Vehicle (EV) technology has developed rapidly in recent years, with the result that increasing levels of EV penetration are expected on electrical grids in the near future. The increasing electricity demand due to EVs is expected to provide many challenges for grid companies, and it is expected that it will be necessary to reinforce the current electrical grid infrastructure to cater for increasing loads at distribution level. However, by harnessing the power of Vehicle to Grid (V2G) technologies, groups of EVs could be harnessed to provide ancillary services to the grid. Current unbalance occurs at distribution level when currents are unbalanced between each of the phases. In this paper a distributed consensus algorithm is used to coordinate EV charging in order to minimise current unbalance. Simulation results demonstrate that the proposed algorithm is effective in rebalancing phase currents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The high penetration of distributed energy resources (DER) in distribution networks and the competitiveenvironment of electricity markets impose the use of new approaches in several domains. The networkcost allocation, traditionally used in transmission networks, should be adapted and used in the distribu-tion networks considering the specifications of the connected resources. The main goal is to develop afairer methodology trying to distribute the distribution network use costs to all players which are usingthe network in each period. In this paper, a model considering different type of costs (fixed, losses, andcongestion costs) is proposed comprising the use of a large set of DER, namely distributed generation(DG), demand response (DR) of direct load control type, energy storage systems (ESS), and electric vehi-cles with capability of discharging energy to the network, which is known as vehicle-to-grid (V2G). Theproposed model includes three distinct phases of operation. The first phase of the model consists in aneconomic dispatch based on an AC optimal power flow (AC-OPF); in the second phase Kirschen’s andBialek’s tracing algorithms are used and compared to evaluate the impact of each resource in the net-work. Finally, the MW-mile method is used in the third phase of the proposed model. A distributionnetwork of 33 buses with large penetration of DER is used to illustrate the application of the proposedmodel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy resource scheduling is becoming increasingly important, as the use of distributed resources is intensified and of massive electric vehicle is envisaged. The present paper proposes a methodology for day-ahead energy resource scheduling for smart grids considering the intensive use of distributed generation and Vehicle-to-Grid (V2G). This method considers that the energy resources are managed by a Virtual Power Player (VPP) which established contracts with their owners. It takes into account these contracts, the users' requirements subjected to the VPP, and several discharge price steps. The full AC power flow calculation included in the model takes into account network constraints. The influence of the successive day requirements on the day-ahead optimal solution is discussed and considered in the proposed model. A case study with a 33-bus distribution network and V2G is used to illustrate the good performance of the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electric vehicle (EV) market has seen a rapid growth in the recent past. With an increase in the number of electric vehicles on road, there is an increase in the number of high capacity battery banks interfacing the grid. The battery bank of an EV, besides being the fuel tank, is also a huge energy storage unit. Presently, it is used only when the vehicle is being driven and remains idle for rest of the time, rendering it underutilized. Whereas on the other hand, there is a need of large energy storage units in the grid to filter out the fluctuations of supply and demand during a day. EVs can help bridge this gap. The EV battery bank can be used to store the excess energy from the grid to vehicle (G2V) or supply stored energy from the vehicle to grid (V2G ), when required. To let power flow happen, in both directions, a bidirectional AC-DC converter is required. This thesis concentrates on the bidirectional AC-DC converters which have a control on power flow in all four quadrants for the application of EV battery interfacing with the grid. This thesis presents a bidirectional interleaved full bridge converter topology. This helps in increasing the power processing and current handling capability of the converter which makes it suitable for the purpose of EVs. Further, the benefit of using the interleaved topology is that it increases the power density of the converter. This ensures optimization of space usage with the same power handling capacity. The proposed interleaved converter consists of two full bridges. The corresponding gate pulses of each switch, in one cell, are phase shifted by 180 degrees from those of the other cell. The proposed converter control is based on the one-cycle controller. To meet the challenge of new requirements of reactive power handling capabilities for grid connected converters, posed by the utilities, the controller is modified to make it suitable to process the reactive power. A fictitious current derived from the grid voltage is introduced in the controller, which controls the converter performance. The current references are generated using the second order generalized integrators (SOGI) and phase locked loop (PLL). A digital implementation of the proposed control ii scheme is developed and implemented using DSP hardware. The simulated and experimental results, based on the converter topology and control technique discussed here, are presented to show the performance of the proposed theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two key solutions to reduce the greenhouse gas emissions and increase the overall energy efficiency are to maximize the utilization of renewable energy resources (RERs) to generate energy for load consumption and to shift to low or zero emission plug-in electric vehicles (PEVs) for transportation. The present U.S. aging and overburdened power grid infrastructure is under a tremendous pressure to handle the issues involved in penetration of RERS and PEVs. The future power grid should be designed with for the effective utilization of distributed RERs and distributed generations to intelligently respond to varying customer demand including PEVs with high level of security, stability and reliability. This dissertation develops and verifies such a hybrid AC-DC power system. The system will operate in a distributed manner incorporating multiple components in both AC and DC styles and work in both grid-connected and islanding modes. The verification was performed on a laboratory-based hybrid AC-DC power system testbed as hardware/software platform. In this system, RERs emulators together with their maximum power point tracking technology and power electronics converters were designed to test different energy harvesting algorithms. The Energy storage devices including lithium-ion batteries and ultra-capacitors were used to optimize the performance of the hybrid power system. A lithium-ion battery smart energy management system with thermal and state of charge self-balancing was proposed to protect the energy storage system. A grid connected DC PEVs parking garage emulator, with five lithium-ion batteries was also designed with the smart charging functions that can emulate the future vehicle-to-grid (V2G), vehicle-to-vehicle (V2V) and vehicle-to-house (V2H) services. This includes grid voltage and frequency regulations, spinning reserves, micro grid islanding detection and energy resource support. The results show successful integration of the developed techniques for control and energy management of future hybrid AC-DC power systems with high penetration of RERs and PEVs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electric vehicle (EV) market has seen a rapid growth in the recent past. With an increase in the number of electric vehicles on road, there is an increase in the number of high capacity battery banks interfacing the grid. The battery bank of an EV, besides being the fuel tank, is also a huge energy storage unit. Presently, it is used only when the vehicle is being driven and remains idle for rest of the time, rendering it underutilized. Whereas on the other hand, there is a need of large energy storage units in the grid to filter out the fluctuations of supply and demand during a day. EVs can help bridge this gap. The EV battery bank can be used to store the excess energy from the grid to vehicle (G2V) or supply stored energy from the vehicle to grid (V2G ), when required. To let power flow happen, in both directions, a bidirectional AC-DC converter is required. This thesis concentrates on the bidirectional AC-DC converters which have a control on power flow in all four quadrants for the application of EV battery interfacing with the grid. This thesis presents a bidirectional interleaved full bridge converter topology. This helps in increasing the power processing and current handling capability of the converter which makes it suitable for the purpose of EVs. Further, the benefit of using the interleaved topology is that it increases the power density of the converter. This ensures optimization of space usage with the same power handling capacity. The proposed interleaved converter consists of two full bridges. The corresponding gate pulses of each switch, in one cell, are phase shifted by 180 degrees from those of the other cell. The proposed converter control is based on the one-cycle controller. To meet the challenge of new requirements of reactive power handling capabilities for grid connected converters, posed by the utilities, the controller is modified to make it suitable to process the reactive power. A fictitious current derived from the grid voltage is introduced in the controller, which controls the converter performance. The current references are generated using the second order generalized integrators (SOGI) and phase locked loop (PLL). A digital implementation of the proposed control ii scheme is developed and implemented using DSP hardware. The simulated and experimental results, based on the converter topology and control technique discussed here, are presented to show the performance of the proposed theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La tesi tratta le tecniche Vehicle-to-Grid (V2G) per l'interfacciamento deli sistemi di ricarica dei veicoli elettrici alla rete. Si analizzano le problematiche che una connessione non controllata può causare e come si può risolvere questo problema. Segue un'analisi dei servizi ausiliari che il sistema V2G è in grado di fornire alla rete di distribuzione e la presentazione di una strategia di regolazione della tensione e della frequenza (SFVR). Infine viene mostrata l'applicazione del sistema V2G che si può ottenere integrando la struttura di ricarica di un veicolo elettrico all'impianto elettrico domestico.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two key solutions to reduce the greenhouse gas emissions and increase the overall energy efficiency are to maximize the utilization of renewable energy resources (RERs) to generate energy for load consumption and to shift to low or zero emission plug-in electric vehicles (PEVs) for transportation. The present U.S. aging and overburdened power grid infrastructure is under a tremendous pressure to handle the issues involved in penetration of RERS and PEVs. The future power grid should be designed with for the effective utilization of distributed RERs and distributed generations to intelligently respond to varying customer demand including PEVs with high level of security, stability and reliability. This dissertation develops and verifies such a hybrid AC-DC power system. The system will operate in a distributed manner incorporating multiple components in both AC and DC styles and work in both grid-connected and islanding modes. ^ The verification was performed on a laboratory-based hybrid AC-DC power system testbed as hardware/software platform. In this system, RERs emulators together with their maximum power point tracking technology and power electronics converters were designed to test different energy harvesting algorithms. The Energy storage devices including lithium-ion batteries and ultra-capacitors were used to optimize the performance of the hybrid power system. A lithium-ion battery smart energy management system with thermal and state of charge self-balancing was proposed to protect the energy storage system. A grid connected DC PEVs parking garage emulator, with five lithium-ion batteries was also designed with the smart charging functions that can emulate the future vehicle-to-grid (V2G), vehicle-to-vehicle (V2V) and vehicle-to-house (V2H) services. This includes grid voltage and frequency regulations, spinning reserves, micro grid islanding detection and energy resource support. ^ The results show successful integration of the developed techniques for control and energy management of future hybrid AC-DC power systems with high penetration of RERs and PEVs.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Smart grids with an intensive penetration of distributed energy resources will play an important role in future power system scenarios. The intermittent nature of renewable energy sources brings new challenges, requiring an efficient management of those sources. Additional storage resources can be beneficially used to address this problem; the massive use of electric vehicles, particularly of vehicle-to-grid (usually referred as gridable vehicles or V2G), becomes a very relevant issue. This paper addresses the impact of Electric Vehicles (EVs) in system operation costs and in power demand curve for a distribution network with large penetration of Distributed Generation (DG) units. An efficient management methodology for EVs charging and discharging is proposed, considering a multi-objective optimization problem. The main goals of the proposed methodology are: to minimize the system operation costs and to minimize the difference between the minimum and maximum system demand (leveling the power demand curve). The proposed methodology perform the day-ahead scheduling of distributed energy resources in a distribution network with high penetration of DG and a large number of electric vehicles. It is used a 32-bus distribution network in the case study section considering different scenarios of EVs penetration to analyze their impact in the network and in the other energy resources management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a novel vehicle to vehicle energy exchange market (V2VEE) between electric vehicles (EVs) for decreasing the energy cost to be paid by some users whose EVs must be recharged during the day to fulfil their daily scheduled trips and also reducing the impact of charging on the electric grid. EVs with excess of energy in their batteries can transfer this energy among other EVs which need charge during their daily trips. These second type of owners can buy the energy directly to the electric grid or they can buy the energy from other EV at lower price. An aggregator is responsible for collecting all information among vehicles located in the same area at the same time and make possible this energy transfer.