922 resultados para Vegetal fibers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies in several countries have shown the occurrence of forest transition, when forest cover increase overcomes the loss by deforestation. In Brazil, although deforestation is still higher than afforestation, this relationship may be inverse in some regions. Recent assessments suggest the tendency of the state of São Paulo towards forest transition. Aiming to analyze forest transition evidence and facilitate the use of existing information, we review data on native vegetation cover variation in São Paulo from four data sources (Instituto Florestal, SOS MataAtlântica/INPE, IBGE and CATI/IEA). Our results indicate that discrepancies among these assessments may be accounted by differences in methodologies and objectives. We highlight their common grounds and discuss possibilities to harmonize their information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The durability of the cellulose-cement composites is a decisive factor to introduce such material in the market. Polymers have been used in concrete and mortar production to increase its durability. The goal of this work was the physical and mechanical characterization of cellulose-cement composites modified by a polymer and the subsequent durability evaluation. The work also evaluated the dispersion of acrylic polymer in composites made of Pinus caribaea residues. The physical properties observed were water absorption by immersion and bulk density. Rupture modulus and toughness were determined by flexural test. The specimens were obtained from pads, produced by pressing and wet curing. Samples were subjected to accelerated aging tests by repeated wetting and drying cycles and hot-water bath and natural aging. The scanning electron microscopy (SEM) allowed verifying the fiber and composite characteristics along the time. For the composite range analyzed, it was observed the polymer improved the mechanical properties of composites besides a significant decreasing in water absorption. The use of polymer improved the performance of vegetable fiber-cement composites when compared to the conventional mortar, due to water absorption decreasing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A common breeding strategy is to carry out basic studies to investigate the hypothesis of a single gene controlling the trait (major gene) with or without polygenes of minor effect. In this study we used Bayesian inference to fit genetic additive-dominance models of inheritance to plant breeding experiments with multiple generations. Normal densities with different means, according to the major gene genotype, were considered in a linear model in which the design matrix of the genetic effects had unknown coefficients (which were estimated in individual basis). An actual data set from an inheritance study of partenocarpy in zucchini (Cucurbita pepo L.) was used for illustration. Model fitting included posterior probabilities for all individual genotypes. Analysis agrees with results in the literature but this approach was far more efficient than previous alternatives assuming that design matrix was known for the generations. Partenocarpy in zucchini is controlled by a major gene with important additive effect and partial dominance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polycyclic aromatic hydrocarbons (PAHs) are a group of compounds that have been the subject of much concern due to their toxic potential. In this study, margarine?s, vegetable cream and mayonnaise available on the Brazilian market were analyzed for pyrene, chrysene, benzo(a)pyrene, benzo(b)fluoranthene and dibenzo(a,h)anthracene. The analytical methodology involved liquid-liquid extraction, clean-up on silica gel column and determination by high performance liquid chromatography using fluorescence detector. Variable levels of contamination were found within differents brands of the same product and within differents batches of the same brand. The total PAH content was in the range of 4.1 to 7.1mug/kg in vegetable cream, 1.7 to 3.9mug/kg in margarine and 1.0 to 21.7mug/kg in mayonnaise. In general the products which according to the label contain corn oil showed the highest levels of contamination. Based on these results and on the importance of fat, oils and derived products for the intake of PAHs, it is recommended that producers of margarine, vegetable creams and mayonnaise start to control the contamination of the vegetable oils used in the elaboration of these products, in order to reduce the exposure of consumers to excessive amounts of potentially carcinogenic compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In long-term oral rehabilitation treatments, resistance of provisional crowns is a very important factor, especially in cases of an extensive edentulous distal space. The aim of this laboratorial study was to evaluate an acrylic resin cantilever-type prosthesis regarding the flexural strength of its in-balance portion as a function of its extension variation and reinforcement by two types of fibers (glass and polyaramid), considering that literature is not conclusive on this subject. Each specimen was composed by 3 total crowns at its mesial portion, each one attached to an implant component (abutment), while the distal portion (cantilever) had two crowns. Each specimen was constructed by injecting acrylic resin into a two-part silicone matrix placed on a metallic base. In each specimen, the crowns were fabricated with either acrylic resin (control group) or acrylic resin reinforced by glass (Fibrante, Angelus) or polyaramide (Kevlar 49, Du Pont) fibers. Compression load was applied on the cantilever, in a point located 7, 14 or 21 mm from the distal surface of the nearest crown with abutment, to simulate different extensions. The specimen was fixed on the metallic base and the force was applied until fracture in a universal test machine. Each one of the 9 sub-groups was composed by 10 specimens. Flexural strength means (in kgf) for the distances of 7, 14 and 21 mm were, respectively, 28.07, 8.27 and 6.39 for control group, 31.89, 9.18 and 5.16 for Kevlar 49 and 30.90, 9.31 and 6.86 for Fibrante. Data analysis ANOVA showed statistically significant difference (p<0.05) only regarding cantilever extension. Tukey's test detected significantly higher flexural strength for the 7 mm-distance, followed by 14 and 21 mm. Fracture was complete only on specimens of non-reinforced groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Thermal injury causes catabolic processes as the body attempts to repair the damaged area. This study evaluated the effects of a scald injury on the morphology of muscle fibers belonging to a muscle distant from the lesion. METHODS: Thirty Wistar rats were divided into control (C) and scalded (S) groups. Group S was scalded over 45% of the body surface, standardized by body weight. Rats in both groups were euthanized at four, seven and 14 days following the injury. The middle portions of the medial gastrocnemius muscles were sectioned, stained with hematoxylin and eosin and Picrosirius, and submitted to histological analysis. RESULTS: Control group sections exhibited equidistantly distributed polygonal muscle fibers with peripheral nuclei, characteristic of normal muscle. The injured group sections did not consistently show these characteristics; many fibers in these sections exhibited a rounded contour, variable stain intensities, and greater interfiber distances. A substantially increased amount of connective tissue was also observed on the injured group sections. CONCLUSION: This experimental model found a morphological change in muscle distant from the site of thermal injury covering 45% of the body surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we discuss the use of photonic crystal fibers (PCFs) as discrete devices for simultaneous wideband dispersion compensation and Raman amplification. The performance of the PCFs in terms of gain, ripple, optical signal-to-noise ratio (OSNR) and required fiber length for complete dispersion compensation is compared with conventional dispersion compensating fibers (DCFs). The main goal is to determine the minimum PCF loss beyond which its performance surpasses a state-of-the-art DCF and justifies practical use in telecommunication systems. (C) 2009 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a new design methodology for discrete multi-pumped Raman amplifier. In a multi-objective optimization scenario, in a first step the whole solution-space is inspected by a CW analytical formulation. Then, the most promising solutions are fully investigated by a rigorous numerical treatment and the Raman amplification performance is thus determined by the combination of analytical and numerical approaches. As an application of our methodology we designed an photonic crystal fiber Raman amplifier configuration which provides low ripple, high gain, clear eye opening and a low power penalty. The amplifier configuration also enables to fully compensate the dispersion introduced by a 70-km singlemode fiber in a 10 Gbit/s system. We have successfully obtained a configuration with 8.5 dB average gain over the C-band and 0.71 dB ripple with almost zero eye-penalty using only two pump lasers with relatively low pump power. (C) 2009 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the microwave dielectric properties and photoluminescence of undoped and europium oxide doped Ta(2)O(5) fibers, grown by laser heated pedestal growth technique. The effects of Eu(2)O(3) doping (1-3 mol %) on the structural, optical, and dielectric properties were investigated. At a frequency of 5 GHz, the undoped material exhibits a dielectric permittivity of 21 and for Eu(2)O(3) doped Ta(2)O(5) samples it increases, reaching up to 36 for the highest doping concentration. Nevertheless, the dielectric losses maintain a very low value. For this wide band gap oxide, Eu(3+) optical activation was achieved and the emission is observed up to room temperature. Thus, the transparency and high permittivity make this material promising for electronic devices and microwave applications. (c) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brazil has a well established ethanol production program based on sugarcane. Sugarcane bagasse and straw are the main by-products that may be used as reinforcement in natural fiber composites. Current work evaluated the influence of fiber insertion within a polypropylene (PP) matrix by tensile, TGA and DSC measurements. Thus, the mechanical properties, weight loss, degradation, melting and crystallization temperatures, heat of melting and crystallization and percentage of crystallinity were attained. Fiber insertion in the matrix improved the tensile modulus and changed the thermal stability of composites (intermediary between neat fibers and PP). The incorporation of natural fibers in PP promoted also apparent T(c) and Delta H(c) increases. As a Conclusion, the fibers added to polypropylene increased the nucleating ability, accelerating the crystallization process, improving the mechanical properties and consequently the fiber/matrix interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ethanol/water organosolv pulping was used to obtain sugarcane bagasse pulp that was bleached with sodium chlorite. This bleached pulp was used to obtain cellulosic films that were further evaluated by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). A good film formation was observed when temperature of 74 degrees C and baths of distilled water were used, which after FTIR, TGA, and SEM analysis indicated no significant difference between the reaction times. The results showed this to be an interesting and promising process, combining the prerequisites for a more efficient utilization of agro-industrial residues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, a detailed numerical investigation is presented, seeking to enhance the birefringence effect by using D-shaped microstructured optical fibers (MOFs). We studied a D-shape core geometry associated with three different air-hole configurations: circular and elliptical, aligned with either the x-direction or the y-direction. Results have shown that ultrahigh birefringence MOFs, with B values of the order of 10(-2) for a wide range of wavelengths, can be obtained. The highest birefringence B was equal 3.97 x 10(-2), a value found for a D-MOF (circular holes) at 1550 nm. To the best of our knowledge, this is the highest theoretical value in the published literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This communication proposes a simple way to introduce fibers into finite element modelling. This is a promising formulation to deal with fiber-reinforced composites by the finite element method (FEM), as it allows the consideration of short or long fibers placed arbitrarily inside a continuum domain (matrix). The most important feature of the formulation is that no additional degree of freedom is introduced into the pre-existent finite element numerical system to consider any distribution of fiber inclusions. In other words, the size of the system of equations used to solve a non-reinforced medium is the same as the one used to solve the reinforced counterpart. Another important characteristic is the reduced work required by the user to introduce fibers, avoiding `rebar` elements, node-by-node geometrical definitions or even complex mesh generation. An additional characteristic of the technique is the possibility of representing unbounded stresses at the end of fibers using a finite number of degrees of freedom. Further studies are required for non-linear applications in which localization may occur. Along the text the linear formulation is presented and the bounded connection between fibers and continuum is considered. Four examples are presented, including non-linear analysis, to validate and show the capabilities of the formulation. Copyright (c) 2007 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the potential of the fibrous material obtained from ethanol-water fractionation of bagasse as reinforcement of thermoplastic starches in order to improve their mechanical properties. The composites were elaborated using matrices of corn and cassava starches plasticized with 30 wt%glycerin. The mixtures (0,5,10 and 15 wt% bagasse fiber) were elaborated in a rheometer at 150 degrees C. The mixtures obtained were pressed on a hot plate press at 155 degrees C. The test specimens were obtained according to ASTM D638. Tensile tests, moisture absorption tests for 24 days (20-23 degrees C and 53% RH, ASTM E104), and dynamic-mechanical analyses (DMA) in tensile mode were carried out. Images by scanning electron microscopy (SEM) and X-ray diffraction were obtained. Fibers (10 wt% bagasse fiber) increased tensile strength by 44% and 47% compared to corn and cassava starches, respectively. The reinforcement (15 wt% bagasse fiber) increased more than fourfold the elastic modulus on starch matrices. The storage modulus at 30 C (E(30 degrees C)`) increased as the bagasse fiber content increased, following the trend of tensile elastic modulus. The results indicate that these fibers have potential applications in the development of biodegradable composite materials. (c) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several studies using vegetable fibers as the exclusive reinforcement in fiber-cement composites have shown acceptable mechanical performance at the first ages. However, after the exposure to accelerated aging tests, these composites have shown significant reduction in the toughness or increase in embrittlement. This was mainly attributed to the improved fiber-matrix adhesion and fiber mineralization after aging process. The objective of the present research was to evaluate composites produced by the slurry dewatering technique followed by pressing and air curing, reinforced with combinations of polypropylene fibers and sisal kraft pulp at different pulp freeness. The physical properties, mechanical performance, and microstructural characteristics of the composites were evaluated before and after accelerated and natural aging. Results showed the great contribution of pulp refinement on the improvement of the mechanical strength in the composites. Higher intensities of refinement resulted in higher modulus of rupture for the composites with hybrid reinforcement after accelerated and natural aging. The more compact microstructure was due to the improved packing of the mineral particles with refined sisal pulp. The toughness of the composites after aging was maintained in relation to the composites at 28 days of cure.