986 resultados para Vaporization, Heats of


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To understand the effect of molecular weight and branching on the heats of vaporization (AH,) and their flow behavior, AH, and viscosity (7) were measured at different temperatures in the high molecular weight ester series: linear flexible di-n-alkyl sebacates and compact branched triglycerides with molecular weight ranging from 300 to 900. AHv" values (AHv corrected to 298 K) have been obtained with experimental AH, and also computed according to the group additivity method; a smaller-CH,- group value of 3.8 kJ mol-' compared to the normal value of 5.0 kJ mol-' is found to give good agreement with the experimental data (within 2-5% error). Both ester series have the same AH," irrespective of their molecular features, namely,shape, flexibility, and polarity, suggesting the coiling of the molecules during vaporization. The segmental motion of these ester series during their flow and its dependence on their molecular features unlike AH,' are demonstrated by the correlation of the enthalpy of activation for viscous flow (AH*) and the ratio AE,/AH* = n (AE, is the energy of vaporization) with molecular weight.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data on heats of mixing at 30 'C, vapor-liquid equilibrium, latent heats of vaporization at 686 mmHg, and vapor pressures for the system toluene-l,2-dichloroethane are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data on heats of mixing at 298.15 and 308.15 K, vaporliquid equilibria, latent heats of vaporization at 686 mmHg, and vapor pressures for the system toluene-1,1,2,2- tetrachloroethane are presented. The effect of alkyl substitution on heats of mixing is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data on molar excess enthalpy on mixing at 298.15 K and 308.15 K, vapor-liquid equilibrium, latent heats of vaporization at 91.444 kPa and vapor pressures for the system toluene – 1, 1, 1-trichloroethane are presented. A simple adiabatic calorimeter designed for molar excess enthalpy measurements is described, tested and used. On présente, dans le cas du système toluène – 1, 1, 1-trichloréthane, des résultats relatifs aux grandeurs suivantes: a) enthalpie molaire d'excès à 298.15 K et 308.15 K; b) équilibre liquid-vapeur; c) chaleurs latentes de vaporisation à une pression absolue de 91.444 kP; d) pressions de vapeur. On décrit un calorimètre adiabatique simple, conçu pour mesurer l'enthalpie molaire d'excès, dont on a fait l'essai.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The flow and vaporization behaviors of long-chain esters of varying molecular weights (300-900) ana branching (linear, Y-shaped, and +-shaped molecules) have been studied. The flow behavior is found to depend on the structure as well as the molecular weight. Below a molecular weight of 600, the molecules flow wholly but above this, segmental motion occurs, and the flow becomes independent of the molecular weight which is explained from the blob model. The blob concept demonstrates that the hole of a size of about 11 angstrom is needed for the flow to occur and it is much less than the size of the molecule. The blob size is observed to slightly decrease along the series linear and Y- and +-branched esters. The heat of vaporization is found to be independent of the molecular structure since the molecules acquire a coiled spherical shape during vaporization and hence depends only on the molecular weight. A significant structural effect is observed for the esters on their glass transition temperature (T(g)). The T(g) vs molecular weight plot displays contrasting trend for linear and +-branched esters, with Y esters showing an intermediate behavior. It is explained from their molecular packing and entanglement as visualized by the blob model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In lean premixed pre-vaporized (LPP) combustion, controlled atomization, dispersion and vaporization of different types of liquid fuel in the premixer are the key factors required to stabilize the combustion process and improve the efficiency. The dispersion and vaporization process for biofuels and conventional fuels sprayed into a crossflow pre-mixer have been simulated and analyzed with respect to vaporization rate, degree of mixedness and homogeneity. Two major biofuels under investigation are Ethanol and Rapeseed Methyl Esters (RME), while conventional fuels are gasoline and jet-A. First, the numerical code is validated by comparing with the experimental data of single n-heptane and decane droplet evaporating under both moderate and high temperature convective air now. Next, the spray simulations were conducted with monodispersed droplets with an initial diameter of 80 mu m injected into a turbulent crossflow of air with a typical velocity of 10 m/s and temperature of around 800K. Vaporization time scales of different fuels are found to be very different. The droplet diameter reduction and surface temperature rise were found to be strongly dependent on the fuel properties. Gasoline droplet exhibited a much faster vaporization due a combination of higher vapor pressure and smaller latent heat of vaporization compared to other fuels. Mono-dispersed spray was adopted with the expectation of achieving more homogeneous fuel droplet size than poly-dispersed spray. However, the diameter histogram in the zone near the pre-mixer exit shows a large range of droplet diameter distributions for all the fuels. In order to improve the vaporization performance, fuels were pre-heated before injection. Results show that the Sauter mean diameter of ethanol improved from 52.8% of the initial injection size to 48.2%, while jet-A improved from 48.4% to 18.6% and RME improved from 63.5% to 31.3%. The diameter histogram showed improved vaporization performance of jet-A. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article addresses the problem of spray vaporization and combustion in axisymmetric opposed-jet configurations involving a stream of hot air counterflowing against a stream of nitrogen carrying a spray of fuel droplets. The Reynolds numbers of the jets are assumed to be large, so that mixing of the two streams is restricted to a thin mixing layer that separates the counterflowing streams. The evolution of the droplets in their feed stream from the injection location is seen to depend fundamentally on the value of the droplet Stokes number, St, defined as the ratio of the droplet acceleration time to the mixing layer strain time close to the stagnation point. Two different regimes of spray vaporization and combustion can be identified depending on the value of St. For values of St below a critical value, equal to 1/4 for dilute sprays with small values of the spray liquid mass loading ratio, the droplets decelerate to approach the gas stagnation plane with a vanishing axial velocity. In this case, the droplets located initially near the axis reach the mixing layer, where they can vaporize due to the heat received from the hot air, producing fuel vapor that can burn with the oxygen in a diffusion flame located on the air side of the mixing layer. The character of the spray combustion is different for values of St of order unity, because the droplets cross the stagnation plane and move into the opposing air stream, reaching distances that are much larger than the mixing layer thickness before they turn around. The vaporization of these crossing droplets, and also the combustion of the fuel vapor generated by them, occur in the hot air stream, without significant effects of molecular diffusion, generating a vaporization-assisted nonpremixed flame that stands on the air side outside the mixing layer. Separate formulations will be given below for these two regimes of combustion, with attention restricted to the near-stagnation-point region, where the solution is self-similar and all variables are only dependent on the distance to the stagnation plane. The resulting formulations display a reduced number of controlling parameters that effectively embody dependences of the structure of the spray flame on spray dilution, droplet inertia, and fuel preferential diffusion. Sample solutions are given for the limiting cases of pure vaporization and of infinitely fast chemistry, with the latter limit formulated in terms of chemistry-free coupling functions that allow for general nonunity Lewis numbers of the fuel vapor.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Poly(vinylidene fluoride) and copolymers of vinylidene fluoride with hexafluoropropylene, trifluoroethylene and chlorotrifluoroethylene have been exposed to gamma irradiation in vacuum, up to doses of 1MGy under identical conditions, to obtain a ranking of radiation sensitivities. Changes in the tensile properties, crystalline melting points,heats of fusion, gel contents and solvent uptake factors were used as the defining parameters. The initial degree of crystallinity and film processing had the greatest influence on relative radiation damage, although the cross-linked network features were almost identical in their solvent swelling characteristics, regardless of the comonomer composition or content.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this Account we have compiled a list of reliable bond energies that are based on a set of critically evaluated experiments. A brief description of the three most important experimental techniques for measuring bond energies is provided. We demonstrate how these experimental data can be applied to yield the heats of formation of organic radicals and the bond enthalpies of more than 100 representative organic molecules.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a determination of Delta(f)H(298)(HOO) based upon a negative. ion thermodynamic cycle. The photoelectron spectra of HOO- and DOO- were used to measure the molecular electron affinities (EAs). In a separate experiment, a tandem flowing afterglow-selected ion flow tube (FA-SIFT) was used to measure the forward and reverse rate constants for HOO- + HCdropCH reversible arrow HOOH + HCdropC(-) at 298 K, which gave a value for Delta(acid)H(298)(HOO-H). The experiments yield the following values: EA(HOO) = 1.078 +/- 0.006 eV; T-0((X) over tilde HOO - (A) over tilde HOO) = 0.872 +/- 0.007 eV; EA(DOO) = 1.077 +/- 0.005 eV; T-0((X) over tilde DOO - (A) over tilde DOO) = 0.874 +/- 0.007 eV; Delta(acid)G(298)(HOO-H) = 369.5 +/- 0.4 kcal mol(-1); and Delta(acid)H(298)(HOO-H) = 376.5 +/- 0.4 kcal mol(-1). The acidity/EA thermochemical cycle yields values for the bond enthalpies of DH298(HOO-H) = 87.8 +/- 0.5 kcal mol(-1) and Do(HOO-H) = 86.6 +/- 0.5 kcal mol(-1). We recommend the following values for the heats of formation of the hydroperoxyl radical: Delta(f)H(298)(HOO) = 3.2 +/- 0.5 kcal mol(-1) and Delta(f)H(0)(HOO) = 3.9 +/- 0.5 kcal mol(-1); we recommend that these values supersede those listed in the current NIST-JANAF thermochemical tables.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Methyl, methyl-d(3), and ethyl hydroperoxide anions (CH3OO-, CD3OO-, and CH3CH2OO-) have been prepared by deprotonation of their respective hydroperoxides in a stream of helium buffer, gas. Photodetachment with 364 nm (3.408 eV) radiation was used to measure the adiabatic electron affinities: EA[CH3OO, (X) over tilde (2)A"] = 1.161 +/- 0.005 eV, EA[CD3OO, (X) over tilde (2)A"] = 1.154 +/- 0.004 eV, and EA[CH3CH2OO, (X) over tilde (2)A"] = 1.186 +/- 0.004 eV. The photoelectron spectra yield values for the term energies: DeltaE((X) over tilde 2A"-(A) over tilde 2A')[CH3OO] = 0.914 +/- 0.005 eV, DeltaE((X) over tilde (2)A"-(A) over tilde 2A') [CD3OO] = 0.913 +/- 0.004 eV, and DeltaE((X) over tilde (2)A"-(A) over tilde (2)A')[CH3CH2OO] = 0.938 +/- 0.004 eV. A localized RO-O stretching mode was observed near 1100 cm(-1) for the ground state of all three radicals, and low-frequency R-O-O bending modes are also reported. Proton-transfer kinetics of the hydroperoxides have been measured in a tandem flowing afterglow-selected ion flow tube k(FA-SIFT) to determine the gas-phase acidity of the parent hydroperoxides: Delta (acid)G(298)(CH3OOH) = 367.6 +/- 0.7 kcal mol(-1), Delta (acid)G(298)(CD3OOH) = 367.9 +/- 0.9 kcal mol(-1), and Delta (acid)G(298)(CH3CH2OOH) = 363.9 +/- 2.0 kcal mol(-1). From these acidities we have derived the enthalpies of deprotonation: Delta H-acid(298)(CH3OOH) = 374.6 +/- 1.0 kcal mol(-1), Delta H-acid(298)(CD3OOH) = 374.9 +/- 1.1 kcal mol(-1), and Delta H-acid(298)(CH2CH3OOH) = 371.0 +/- 2.2 kcal mol(-1). Use of the negative-ion acidity/EA cycle provides the ROO-H bond enthalpies: DH298(CH3OO-H) 87.8 +/- 1.0 kcal mol(-1), DH298(CD3OO-H) = 87.9 +/- 1.1 kcal mol(-1), and DH298(CH3CH2OO-H) = 84.8 +/- 2.2 kcal mol(-1). We review the thermochemistry of the peroxyl radicals, CH3OO and CH3CH2OO. Using experimental bond enthalpies, DH298(ROO-H), and CBS/APNO ab initio electronic structure calculations for the energies of the corresponding hydroperoxides, we derive the heats of formation of the peroxyl radicals. The "electron affinity/acidity/CBS" cycle yields Delta H-f(298)[CH3OO] = 4.8 +/- 1.2 kcal mol(-1) and Delta H-f(298)[CH3CH2OO] = -6.8 +/- 2.3 kcal mol(-1).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

the heats of reaction of an oxygen-balanced ternary fuel-oxidizer system have been shown to be linearly related to the total oxidizing valences (P0) of the composition. Because calculation of P0 is simple, the method is found to help in evaluating the energetics of such systems. The accuracy of the method when applied to various ternary systems has been discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The heats of combustion of mono-, di-, tri- and tetramethylammonium perchlorates have been determined by bomb calorimetry. The data have been used to explain why the thermal behavior of ammonium perchlorate (AP) is considerably modified in presence of these compounds as shown by differential thermal analysis. Above a particular concentration of methylammonium perchlorate (MAP), AP ignites in a single step around 290°C. The minimum concentration of a MAP (mono-, di-, tri- or tetra-) needed to cause ignition of AP in a single step depends on intramolecular “elemental stoichiometric coefficient” of the mixtures that has the same value regardless of the MAP. Furthermore, the calorimetric values of these mixtures are the same. The heat evolved on ignition of such a composition appears to determine the lower concentration limit of combustion of its mixture with AP.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new method of calculating the calorific values of fossil fuels from their chemical composition has been developed, based on the concept that heats of reaction of stoichiometric fuel-oxidizer systems are rectilinearly related with the total oxidizing or reducing valancies of the mixture. The calorific value of fossil fuels has been shown to be directly related to the net reducing valencies of the fuel. The proposed method is simple and compares favourably with the other prominent methods reported in the literature.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents the experimental data on vapor-liquid equilibrium and heats of mixing of mixtures of benzene with 1, e-dichloroethane, 1, l, 1 -trichloroethane, and lt1,2,2-tetrachloroethane.A literature survey revealed that the heats of mixing of benzene-l,2-dichloroethane have been studied and Table I shows the extent of study on this system.