713 resultados para Vanishing Theorems
Resumo:
We study the Segal-Bargmann transform on a motion group R-n v K, where K is a compact subgroup of SO(n) A characterization of the Poisson integrals associated to the Laplacian on R-n x K is given We also establish a Paley-Wiener type theorem using complexified representations
Resumo:
In this paper we obtain existence theorems for generalized Hammerstein-type equations K(u)Nu + u = 0, where for each u in the dual X* of a real reflexive Banach space X, K(u): X -- X* is a bounded linear map and N: X* - X is any map (possibly nonlinear). The method we adopt is totally different from the methods adopted so far in solving these equations. Our results in the reflexive spacegeneralize corresponding results of Petry and Schillings.
Resumo:
Various Tb theorems play a key role in the modern harmonic analysis. They provide characterizations for the boundedness of Calderón-Zygmund type singular integral operators. The general philosophy is that to conclude the boundedness of an operator T on some function space, one needs only to test it on some suitable function b. The main object of this dissertation is to prove very general Tb theorems. The dissertation consists of four research articles and an introductory part. The framework is general with respect to the domain (a metric space), the measure (an upper doubling measure) and the range (a UMD Banach space). Moreover, the used testing conditions are weak. In the first article a (global) Tb theorem on non-homogeneous metric spaces is proved. One of the main technical components is the construction of a randomization procedure for the metric dyadic cubes. The difficulty lies in the fact that metric spaces do not, in general, have a translation group. Also, the measures considered are more general than in the existing literature. This generality is genuinely important for some applications, including the result of Volberg and Wick concerning the characterization of measures for which the analytic Besov-Sobolev space embeds continuously into the space of square integrable functions. In the second article a vector-valued extension of the main result of the first article is considered. This theorem is a new contribution to the vector-valued literature, since previously such general domains and measures were not allowed. The third article deals with local Tb theorems both in the homogeneous and non-homogeneous situations. A modified version of the general non-homogeneous proof technique of Nazarov, Treil and Volberg is extended to cover the case of upper doubling measures. This technique is also used in the homogeneous setting to prove local Tb theorems with weak testing conditions introduced by Auscher, Hofmann, Muscalu, Tao and Thiele. This gives a completely new and direct proof of such results utilizing the full force of non-homogeneous analysis. The final article has to do with sharp weighted theory for maximal truncations of Calderón-Zygmund operators. This includes a reduction to certain Sawyer-type testing conditions, which are in the spirit of Tb theorems and thus of the dissertation. The article extends the sharp bounds previously known only for untruncated operators, and also proves sharp weak type results, which are new even for untruncated operators. New techniques are introduced to overcome the difficulties introduced by the non-linearity of maximal truncations.
Resumo:
In this paper we prove two Paley-Wiener-type theorems for the Heisenberg group. One is for the group Fourier transform which is the analogue of the classical Paley-Wiener theorem. The other one is for the spectral projections associated to the sub-Laplacian
Resumo:
We prove a Wiener Tauberian theorem for the L-1 spherical functions on a semisimple Lie group of arbitrary real rank. We also establish a Schwartz-type theorem for complex groups. As a corollary we obtain a Wiener Tauberian type result for compactly supported distributions.
Resumo:
We re-examine holographic versions of the c-theorem and entanglement entropy in the context of higher curvature gravity and the AdS/CFT correspondence. We select the gravity theories by tuning the gravitational couplings to eliminate non-unitary operators in the boundary theory and demonstrate that all of these theories obey a holographic c-theorem. In cases where the dual CFT is even-dimensional, we show that the quantity that flow is the central charge associated with the A-type trace anomaly. Here, unlike in conventional holographic constructions with Einstein gravity, we are able to distinguish this quantity from other central charges or the leading coefficient in the entropy density of a thermal bath. In general, we are also able to identify this quantity with the coefficient of a universal contribution to the entanglement entropy in a particular construction. Our results suggest that these coefficients appearing in entanglement entropy play the role of central charges in odd-dimensional CFT's. We conjecture a new c-theorem on the space of odd-dimensional field theories, which extends Cardy's proposal for even dimensions. Beyond holography, we were able to show that for any even-dimensional CFT, the universal coefficient appearing the entanglement entropy which we calculate is precisely the A-type central charge.
Resumo:
This study updates the status and conservation of the Endangered Asian elephant Elephas maximus in Cat Tien National Park, Vietnam. Line transect indirect surveys, block surveys for elephant signs, village surveys of elephant-human conflict incidents, guard-post surveys for records of sightings, and surveys of elephant food plants were undertaken during the dry and wet seasons of 2001. A minimum of 11 elephants and a maximum of 15-17 elephants was estimated for c. 500 km2 of the Park and its vicinity. The elephants are largely confined to the southern boundary of the Park and make extensive use of the adjoining La Nga State Forest Enterprises. During the dry season the elephants depend on at least 26 species of wild and cultivated plants, chiefly the fruits of cashew. Most of the villages surveyed reported some elephant-human conflict. Two adult male elephants seem to cover a large area to raid crops, whereas the family groups restrict themselves to a few villages; overall, the conflict is not serious. Since 2001 there have been no reports of any deaths or births of elephants in the Park. We make recommendations for habitat protection and management, increasing the viability of the small population, reducing elephant-human conflicts, and improving the chances of survival of the declining elephants of this Park. The Government has now approved an Action Plan for Urgent Conservation Areas in Vietnam that calls for the establishment of three elephant conservation areas in the country, including Cat Tien National Park.
Resumo:
The dilaton action in 3 + 1 dimensions plays a crucial role in the proof of the a-theorem. This action arises using Wess-Zumino consistency conditions and crucially relies on the existence of the trace anomaly. Since there are no anomalies in odd dimensions, it is interesting to ask how such an action could arise otherwise. Motivated by this we use the AdS/CFT correspondence to examine both even and odd dimensional conformal field theories. We find that in even dimensions, by promoting the cutoff to a field, one can get an action for this field which coincides with the Wess-Zumino action in flat space. In three dimensions, we observe that by finding an exact Hamilton-Jacobi counterterm, one can find a non-polynomial action which is invariant under global Weyl rescalings. We comment on how this finding is tied up with the F-theorem conjectures.
Resumo:
The purpose of this article is to study Lipschitz CR mappings from an h-extendible (or semi-regular) hypersurface in . Under various assumptions on the target hypersurface, it is shown that such mappings must be smooth. A rigidity result for proper holomorphic mappings from strongly pseudoconvex domains is also proved.
Resumo:
Given a smooth, projective variety Y over an algebraically closed field of characteristic zero, and a smooth, ample hyperplane section X subset of Y, we study the question of when a bundle E on X, extends to a bundle epsilon on a Zariski open set U subset of Y containing X. The main ingredients used are explicit descriptions of various obstruction classes in the deformation theory of bundles, together with Grothendieck-Lefschetz theory. As a consequence, we prove a Noether-Lefschetz theorem for higher rank bundles, which recovers and unifies the Noether-Lefschetz theorems of Joshi and Ravindra-Srinivas.
Resumo:
In many systems, nucleation of a stable solid may occur in the presence of other (often more than one) metastable phases. These may be polymorphic solids or even liquid phases. Sometimes, the metastable phase might have a lower free energy minimum than the liquid but higher than the stable-solid-phase minimum and have characteristics in between the parent liquid and the globally stable solid phase. In such cases, nucleation of the solid phase from the melt may be facilitated by the metastable phase because the latter can ``wet'' the interface between the parent and the daughter phases, even though there may be no signature of the existence of metastable phase in the thermodynamic properties of the parent liquid and the stable solid phase. Straightforward application of classical nucleation theory (CNT) is flawed here as it overestimates the nucleation barrier because surface tension is overestimated (by neglecting the metastable phases of intermediate order) while the thermodynamic free energy gap between daughter and parent phases remains unchanged. In this work, we discuss a density functional theory (DFT)-based statistical mechanical approach to explore and quantify such facilitation. We construct a simple order-parameter-dependent free energy surface that we then use in DFT to calculate (i) the order parameter profile, (ii) the overall nucleation free energy barrier, and (iii) the surface tension between the parent liquid and the metastable solid and also parent liquid and stable solid phases. The theory indeed finds that the nucleation free energy barrier can decrease significantly in the presence of wetting. This approach can provide a microscopic explanation of the Ostwald step rule and the well-known phenomenon of ``disappearing polymorphs'' that depends on temperature and other thermodynamic conditions. Theory reveals a diverse scenario for phase transformation kinetics, some of which may be explored via modem nanoscopic synthetic methods.