991 resultados para VO2max, middle-distance running


Relevância:

100.00% 100.00%

Publicador:

Resumo:

On Sunday 6 April 1997, historian Mark Baker's first non-academic book was launched at Melbourne's iconic migrant portal, Station Pier. The guest list of over 500 invitees included representatives of many print media organisations, most of whom interviewed the author. His photograph was reproduced a week later in the 'Agenda' section of The Age newspaper. In this portrait, Baker leans on the railings beside the massive structure of Station Pier. Framed by sea and sky, he is caught glancing pensively over his shoulder past the camera and into the middle distance. He is alone. The day is bleak. Here, the reader is invited to surmise, is a man with much on his mind. In a flash of inspiration the sub-editor has prefaced the accompanying caption, 'Back to the future', linking the story with the mass media of film and television.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The importance of pacing for middle-distance performance is well recognized, yet previous research has produced equivocal results. Twenty-six trained male cyclists ( V O2peak 62.8+5.9 ml ·kg-1 · min-1· maximal aerobic power output 340+43 W; mean+s) performed three cycling time-trials where the total external work (102.7+13.7 kJ) for each trial was identical to the best of two 5-min habituation trials. Markers of aerobic and anaerobic metabolism were assessed in 12 participants. Power output during the first quarter of the time-trials was fixed to control external mechanical work done (25.7+3.4 kJ) and induce fast-, even-, and slow-starting strategies (60, 75, and 90 s, respectively). Finishing times for the fast-start time-trial (4:53+0:11 min:s) were shorter than for the even-start (5:04+0:11 min:s; 95% CI=5 to 18 s, effect size=0.65, P 50.001) and slow-start time-trial (5:09+0:11 min:s; 95% CI=7 to 24 s, effect size=1.00, P 50.001). Mean VO2 during the fast-start trials (4.31+0.51 litres · min-1) was 0.18+0.19 litres · min-1 (95% CI=0.07 to 0.30 litres · min-1, effect size=0.94, P =0.003) higher than the even- and 0.18+0.20 litres · min-1 (95% CI=0.5 to 0.30 litres · min-1, effect size=0.86, P =0.007) higher than the slow-start time-trial. Oxygen deficit was greatest during the first quarter of the fast-start trial but was lower than the even- and slow-start trials during the second quarter of the trial. Blood lactate and pH were similar between the three trials. In conclusion, performance during a 5-min cycling time-trial was improved with the adoption of a fast- rather than an even- or slow-starting strategy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endurance athletes have an increased risk of atrial fibrillation. We performed a longitudinal study on elite runners of the 2010 Jungfrau Marathon, a Swiss mountain marathon, to determine acute effects of long-distance running on the atrial myocardium. Ten healthy male athletes were included and examined 9 to 1 week prior to the race, immediately after, and 1, 5, and 8 days after the race. Mean age was 34.9 ± 4.2 years, and maximum oxygen consumption was 66.8 ± 5.8 mL/kg*min. Mean race time was 243.9 ± 17.7 min. Electrocardiographic-determined signal-averaged P-wave duration (SAPWD) increased significantly after the race and returned to baseline levels during follow-up (128.7 ± 10.9 vs. 137.6 ± 9.8 vs. 131.5 ± 8.6 ms; P < 0.001). Left and right atrial volumes showed no significant differences over time, and there were no correlations of atrial volumes and SAPWD. Prolongation of the SAPWD was accompanied by a transient increase in levels of high-sensitivity C-reactive protein, proinflammatory cytokines, total leucocytes, neutrophil granulocytes, pro atrial natriuretic peptide and high-sensitivity troponin. In conclusion, marathon running was associated with a transient conduction delay in the atria, acute inflammation and increased atrial wall tension. This may reflect exercise-induced atrial myocardial edema and may contribute to atrial remodeling over time, generating a substrate for atrial arrhythmias.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although long distance running clearly has benefits--as witnessed by its popularity--it also has risks of injury and death. Little is known, however, about the prevalence of potentially dangerous training habits in long distance runners, although anecdotal information suggests that many runners have erroneous beliefs about risks and benefits of marathon running. We conducted a cross-sectional survey to estimate the prevalence of 19 potentially dangerous training habits (risky behaviors) among marathon runners. A 66-item self-administered questionnaire was mailed to a stratified random sample of runners who finished of the 1992 Houston-Tenneco Marathon and were 21-71 years of age. Responses were obtained from 508 runners (83%) with approximately equal representation in four age-gender groups: men $<$40 years, men $\ge$40 years, women $<$40 years, and women $\ge$40 years.^ Prevalences of risky behaviors were high. 50% or more ran in dangerously hot and humid conditions, did not cool down or stretch after running, did not wear proper running gear, or ran when injured or ill; 25-49% did not warm up, ran on dangerous surfaces, did not drink sufficient water during training, increased weekly mileage too quickly, and ran during lightning storms; 10-24% ran daily, ran in areas with high pollution, ran in the same direction as traffic, did hard runs frequently, ran more than 60 miles per week, or ran against the advice of a physician.^ Positive associations were found between the practice of risky behaviors and self-reported prevalence of musculoskeletal injuries, heat-related injuries, noncompliance with recommendations for preventive health examinations, and noncompliance with positive health habits.^ These results indicate that many marathon runners engage in training habits that may increase risk of substantial injury or illness. Further studies are needed to explore the association of risky training behaviors on the incidence of injuries, and to determine reasons for noncompliance with recommendations from sports medicine specialists. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Federal Highway Administration, Washington, D.C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RESUMEN. En este trabajo de titulación se describe el proceso de investigación científica y social del diseño, aplicación y evaluación de una propuesta de entrenamiento deportivo para atletas damas y varones de las categorías prejuveniles de la Escuela de Atletismo “Patricio Quille” de la ciudad de Cuenca. Dicha propuesta de trabajo investigativo en el área de la Cultura Física consistió en el diseño de un macrociclo de entrenamiento estructurado por procesos de desarrollo de las cualidades físicas de los deportistas, pero básicamente se centró en el desarrollo de la técnica de la carrera de medio fondo en función de los principios fisiológicos del rendimiento deportivo y la psicopedagogía de la enseñanza deportiva. Al final del proceso, la propuesta fue totalmente validada con los logros deportivos que los atletas inmersos en la investigación alcanzaron enel entorno competitivo local, nacional e incluso internacional.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Use of the Global Positioning System (GPS) for quantifying athletic performance is common in many team sports. The effect of running velocity on measurement validity is well established, but the influence of rapid directional change is not well understood in team sport applications. This effect was systematically evaluated using multidirectional and curvilinear adaptations of a validated soccer simulation protocol that maintained identical velocity profiles. Team sport athletes completed 90 min trials of the Loughborough Intermittent Shuttle-running Test movement pattern on curvilinear, and multidirectional shuttle running tracks while wearing a 5 Hz (with interpolated 15 Hz output) GPS device. Reference total distance (13 200 m) was systematically over- and underestimated during curvilinear (2.61±0.80%) and shuttle (-3.17±2.46%) trials, respectively. Within-epoch measurement uncertainty dispersion was widest during the shuttle trial, particularly during the jog and run phases. Relative measurement reliability was excellent during both trials (Curvilinear r = 1.00, slope = 1.03, ICC = 1.00; Shuttle r = 0.99, slope = 0.97, ICC = 0.99). Absolute measurement reliability was superior during the curvilinear trial (Curvilinear SEM = 0 m, CV = 2.16%, LOA ± 223 m; Shuttle SEM = 119 m, CV = 2.44%, LOA ± 453 m). Rapid directional change degrades the accuracy and absolute reliability of GPS distance measurement, and caution is recommended when using GPS to quantify rapid multidirectional movement patterns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Emissions from airport operations are of significant concern because of their potential impact on local air quality and human health. The currently limited scientific knowledge of aircraft emissions is an important issue worldwide, when considering air pollution associated with airport operation, and this is especially so for ultrafine particles. This limited knowledge is due to scientific complexities associated with measuring aircraft emissions during normal operations on the ground. In particular this type of research has required the development of novel sampling techniques which must take into account aircraft plume dispersion and dilution as well as the various particle dynamics that can affect the measurements of the aircraft engine plume from an operational aircraft. In order to address this scientific problem, a novel mobile emission measurement method called the Plume Capture and Analysis System (PCAS), was developed and tested. The PCAS permits the capture and analysis of aircraft exhaust during ground level operations including landing, taxiing, takeoff and idle. The PCAS uses a sampling bag to temporarily store a sample, providing sufficient time to utilize sensitive but slow instrumental techniques to be employed to measure gas and particle emissions simultaneously and to record detailed particle size distributions. The challenges in relation to the development of the technique include complexities associated with the assessment of the various particle loss and deposition mechanisms which are active during storage in the PCAS. Laboratory based assessment of the method showed that the bag sampling technique can be used to accurately measure particle emissions (e.g. particle number, mass and size distribution) from a moving aircraft or vehicle. Further assessment of the sensitivity of PCAS results to distance from the source and plume concentration was conducted in the airfield with taxiing aircraft. The results showed that the PCAS is a robust method capable of capturing the plume in only 10 seconds. The PCAS is able to account for aircraft plume dispersion and dilution at distances of 60 to 180 meters downwind of moving a aircraft along with particle deposition loss mechanisms during the measurements. Characterization of the plume in terms of particle number, mass (PM2.5), gaseous emissions and particle size distribution takes only 5 minutes allowing large numbers of tests to be completed in a short time. The results were broadly consistent and compared well with the available data. Comprehensive measurements and analyses of the aircraft plumes during various modes of the landing and takeoff (LTO) cycle (e.g. idle, taxi, landing and takeoff) were conducted at Brisbane Airport (BNE). Gaseous (NOx, CO2) emission factors, particle number and mass (PM2.5) emission factors and size distributions were determined for a range of Boeing and Airbus aircraft, as a function of aircraft type and engine thrust level. The scientific complexities including the analysis of the often multimodal particle size distributions to describe the contributions of different particle source processes during the various stages of aircraft operation were addressed through comprehensive data analysis and interpretation. The measurement results were used to develop an inventory of aircraft emissions at BNE, including all modes of the aircraft LTO cycle and ground running procedures (GRP). Measurements of the actual duration of aircraft activity in each mode of operation (time-in-mode) and compiling a comprehensive matrix of gas and particle emission rates as a function of aircraft type and engine thrust level for real world situations was crucial for developing the inventory. The significance of the resulting matrix of emission rates in this study lies in the estimate it provides of the annual particle emissions due to aircraft operations, especially in terms of particle number. In summary, this PhD thesis presents for the first time a comprehensive study of the particle and NOx emission factors and rates along with the particle size distributions from aircraft operations and provides a basis for estimating such emissions at other airports. This is a significant addition to the scientific knowledge in terms of particle emissions from aircraft operations, since the standard particle number emissions rates are not currently available for aircraft activities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis aimed to investigate the way in which distance runners modulate their speed in an effort to understand the key processes and determinants of speed selection when encountering hills in natural outdoor environments. One factor which has limited the expansion of knowledge in this area has been a reliance on the motorized treadmill which constrains runners to constant speeds and gradients and only linear paths. Conversely, limits in the portability or storage capacity of available technology have restricted field research to brief durations and level courses. Therefore another aim of this thesis was to evaluate the capacity of lightweight, portable technology to measure running speed in outdoor undulating terrain. The first study of this thesis assessed the validity of a non-differential GPS to measure speed, displacement and position during human locomotion. Three healthy participants walked and ran over straight and curved courses for 59 and 34 trials respectively. A non-differential GPS receiver provided speed data by Doppler Shift and change in GPS position over time, which were compared with actual speeds determined by chronometry. Displacement data from the GPS were compared with a surveyed 100m section, while static positions were collected for 1 hour and compared with the known geodetic point. GPS speed values on the straight course were found to be closely correlated with actual speeds (Doppler shift: r = 0.9994, p < 0.001, Δ GPS position/time: r = 0.9984, p < 0.001). Actual speed errors were lowest using the Doppler shift method (90.8% of values within ± 0.1 m.sec -1). Speed was slightly underestimated on a curved path, though still highly correlated with actual speed (Doppler shift: r = 0.9985, p < 0.001, Δ GPS distance/time: r = 0.9973, p < 0.001). Distance measured by GPS was 100.46 ± 0.49m, while 86.5% of static points were within 1.5m of the actual geodetic point (mean error: 1.08 ± 0.34m, range 0.69-2.10m). Non-differential GPS demonstrated a highly accurate estimation of speed across a wide range of human locomotion velocities using only the raw signal data with a minimal decrease in accuracy around bends. This high level of resolution was matched by accurate displacement and position data. Coupled with reduced size, cost and ease of use, the use of a non-differential receiver offers a valid alternative to differential GPS in the study of overground locomotion. The second study of this dissertation examined speed regulation during overground running on a hilly course. Following an initial laboratory session to calculate physiological thresholds (VO2 max and ventilatory thresholds), eight experienced long distance runners completed a self- paced time trial over three laps of an outdoor course involving uphill, downhill and level sections. A portable gas analyser, GPS receiver and activity monitor were used to collect physiological, speed and stride frequency data. Participants ran 23% slower on uphills and 13.8% faster on downhills compared with level sections. Speeds on level sections were significantly different for 78.4 ± 7.0 seconds following an uphill and 23.6 ± 2.2 seconds following a downhill. Speed changes were primarily regulated by stride length which was 20.5% shorter uphill and 16.2% longer downhill, while stride frequency was relatively stable. Oxygen consumption averaged 100.4% of runner’s individual ventilatory thresholds on uphills, 78.9% on downhills and 89.3% on level sections. Group level speed was highly predicted using a modified gradient factor (r2 = 0.89). Individuals adopted distinct pacing strategies, both across laps and as a function of gradient. Speed was best predicted using a weighted factor to account for prior and current gradients. Oxygen consumption (VO2) limited runner’s speeds only on uphill sections, and was maintained in line with individual ventilatory thresholds. Running speed showed larger individual variation on downhill sections, while speed on the level was systematically influenced by the preceding gradient. Runners who varied their pace more as a function of gradient showed a more consistent level of oxygen consumption. These results suggest that optimising time on the level sections after hills offers the greatest potential to minimise overall time when running over undulating terrain. The third study of this thesis investigated the effect of implementing an individualised pacing strategy on running performance over an undulating course. Six trained distance runners completed three trials involving four laps (9968m) of an outdoor course involving uphill, downhill and level sections. The initial trial was self-paced in the absence of any temporal feedback. For the second and third field trials, runners were paced for the first three laps (7476m) according to two different regimes (Intervention or Control) by matching desired goal times for subsections within each gradient. The fourth lap (2492m) was completed without pacing. Goals for the Intervention trial were based on findings from study two using a modified gradient factor and elapsed distance to predict the time for each section. To maintain the same overall time across all paced conditions, times were proportionately adjusted according to split times from the self-paced trial. The alternative pacing strategy (Control) used the original split times from this initial trial. Five of the six runners increased their range of uphill to downhill speeds on the Intervention trial by more than 30%, but this was unsuccessful in achieving a more consistent level of oxygen consumption with only one runner showing a change of more than 10%. Group level adherence to the Intervention strategy was lowest on downhill sections. Three runners successfully adhered to the Intervention pacing strategy which was gauged by a low Root Mean Square error across subsections and gradients. Of these three, the two who had the largest change in uphill-downhill speeds ran their fastest overall time. This suggests that for some runners the strategy of varying speeds systematically to account for gradients and transitions may benefit race performances on courses involving hills. In summary, a non – differential receiver was found to offer highly accurate measures of speed, distance and position across the range of human locomotion speeds. Self-selected speed was found to be best predicted using a weighted factor to account for prior and current gradients. Oxygen consumption limited runner’s speeds only on uphills, speed on the level was systematically influenced by preceding gradients, while there was a much larger individual variation on downhill sections. Individuals were found to adopt distinct but unrelated pacing strategies as a function of durations and gradients, while runners who varied pace more as a function of gradient showed a more consistent level of oxygen consumption. Finally, the implementation of an individualised pacing strategy to account for gradients and transitions greatly increased runners’ range of uphill-downhill speeds and was able to improve performance in some runners. The efficiency of various gradient-speed trade- offs and the factors limiting faster downhill speeds will however require further investigation to further improve the effectiveness of the suggested strategy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uncooperative iris identification systems at a distance and on the move often suffer from poor resolution and poor focus of the captured iris images. The lack of pixel resolution and well-focused images significantly degrades the iris recognition performance. This paper proposes a new approach to incorporate the focus score into a reconstruction-based super-resolution process to generate a high resolution iris image from a low resolution and focus inconsistent video sequence of an eye. A reconstruction-based technique, which can incorporate middle and high frequency components from multiple low resolution frames into one desired super-resolved frame without introducing false high frequency components, is used. A new focus assessment approach is proposed for uncooperative iris at a distance and on the move to improve performance for variations in lighting, size and occlusion. A novel fusion scheme is then proposed to incorporate the proposed focus score into the super-resolution process. The experiments conducted on the The Multiple Biometric Grand Challenge portal database shows that our proposed approach achieves an EER of 2.1%, outperforming the existing state-of-the-art averaging signal-level fusion approach by 19.2% and the robust mean super-resolution approach by 8.7%.