30 resultados para VMD


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work aimed to evaluate the volumetric distribution profiles, droplet spectra, surface tension, contact angle of droplet and the spraying liquid deposition over the peanut leaves (Arachis hypogaea L.), under artificial rain, in comparison with deposition without rain, using two hydraulic nozzle models of plain fan and insecticide spraying liquids with and without adjuvants addition. It were used a patternator for volumetric distribution analysis, a laser particles analyzer to evaluate droplet spectra produced by SF 110015 and XR 110015 nozzles and tensiometer for droplet tension and contact angle. The spraying liquids evaluated were: water, lambda-cialotrina, lambda-cialotrina + nitrogen fertilizer and lambda-cialotrina + mineral oil. All experiments followed a completely randomized design. Data were submitted to variance analysis by F test and the means comparisons by Scott-Knott test at 5% of probability. According to the results, it must be considered the maximum spacing in spray boom usage of 50 and 90 cm between the nozzles SF110015 and XR110015, respectively. The adjuvants effects on droplet spectra have shown addicted to the nozzle and the product used, and the adjuvants addition to the spraying liquid affected the potential risk of drift; The Volumetric Median Diameter (VMD) of produced droplets by nozzles filled into thin class and were not influenced by the adjuvants. The nitrogen fertilizer adjuvant may be indicated to promote improvements on coverage and droplet deposition on target.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The application technology shows many parameters related to the quality of the application, one is the droplet spectrum, which is influenced by the spray nozzles and the adjuvant used. Therefore, the objective of this work was estimate the behavior of the droplet spectrum generated with different nozzles and different adjuvants. The experiment was installed containing four solutions from different type adjuvant dilution, as vegetal oil, mineral oil, surfactant and drift reduction, which were applied with two nozzle, one pre-orifice flat fan (DG 8003 VS) and other of air induction flat fan (AI 8003 VS), totaling 8 treatments with 3 repetitions. The experiment was realized in ideal weather conditions for spraying. The treatments averages were compared using Confidence Interval at 95% probability and the correlations between variables were analyzed using Pearson at 5% of probability. The analysis of droplet spectrum showed different behavior for each adjuvant and nozzle. The surfactant treatment showed VMD superior for all treatments when sprayed with AI nozzles. For the %vol.<100 µm the lowest value found was for the AI nozzle in combination with the surfactant. The significant correlations found for the nozzles AI and DG were negative between VMD and %vol.<100 µm. It can be concluded that the values of DMV and %vol.<100 µm showed that the nozzle with pre-orifice have droplet spectrum more prone to drift. The surfactant showed to be the best drift reduction technique when combined with the AI nozzle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aimed to verify the influence of adjuvants on the droplet spectrum of an air induction nozzle. The experiment used nine spray solutions, one including only water and eight containing adjuvants: Nimbus® (mineral oil), Óleo vegetal Nortox (vegetal oil), Li-700® (a mixture of lecithin and propionic acid), Agral® (nonyl phenoxy poly ethanol), In-Tec® (nonyl phenol ethoxylate), Antideriva (nonyl phenol ethoxylate), Silwet® L-77 Ag (copolymer polyester and silicon) and TA 35 (sodium lauryl ether sulfate). A flat fan air induction nozzle Hypro® Guardian Air 110 03 was used for the droplet spectrum evaluation. The study was conducted at the Laboratory for Particle Size Analysis (Lapar), at FCAV/UNESP, Jaboticabal/SP - Brazil. The determination of the droplet spectrum characteristics (Volume Median Diameter/VMD, percentage of droplets smaller than 100 micrometers and span) was carried out by a particle size analyzer by laser diffraction Mastersizer S (Malvern Instruments). For statistical analysis the mean values were compared using Confidence Interval at 95% (CI 95%). The results showed that for the Hypro® GA air induction nozzle the oil based adjuvants (Óleo Vegetal Nortox e Nimbus®) increased the VMD. The percentage of droplets smaller than 100 micrometers was lower for the Agral®, Antideriva, In-Tec® e TA 35, in comparison with the Óleo Vegetal Nortox and Li-700®. The span was higher for the oil based adjuvants (Óleo Vegetal Nortox e Nimbus®) and lower for the TA 35 (sodium lauryl ether sulfate), showing that the TA 35 adjuvant has a potential to improve the quality of the droplet spectrum of the Hypro® GA 11003 nozzle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work was to evaluate the effect of the addition of different surfactants in physical and chemical properties of spray solutions, droplets spectra and drift potential on agricultural spraying. The surfactants and concentrations (v v-1) were: Haiten (0.1%), Antideriva and Intec (0.05% and 0.1%). The following characteristics were analyzed: surface tension, viscosity, density and electric conductivity. The droplet size spectrum was determined by a laser particle analyzer (Mastersizer S®, version 2.15) including measurements of volume medium diameter (VMD), the percent of droplets below 50 and 100 μm (V50 e V100) and index span. In order to estimate the drift potential, a series of wind tunnel tests were performed with a Teejet XR 8003 flat fan nozzle at 200 kPa (medium droplets) used to apply the spray solutions containing water, the adjuvants and a food color dye (Brilliant blue FD & C no 1) at 0,6% m v-1. The drift was collected on nylon strips transversally fixed along the tunnel at different distances from the nozzle and different high from the bottom part of the tunnel. Drift deposits were evaluated by spectrophotometry. The results showed that the addition of adjuvants changed physical and chemical properties of spray solutions in different magnitudes according to the surfactant. Surfactants changed the droplet spectrum and drift potential, indicating that higher VMD and smaller V100 induced higher percentage of drift.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Herbicides application success depends, besides product correct choice, the observation of environmental conditions and application quality. The work aimed to quantify the effects of surfactant addition in spraying solution, in natural and artificial targets, associated to different nozzle boom angles in relation to application offset, by using distinct evaluation methods. Two experiments were conducted at NuPAM-FCA/UNESP, Botucatu County, São Paulo State, constituted by ten treatments, in factorial scheme 2 × 5, corresponding to two spraying solutions conditions (absence or presence of Aterbane BRTM (0.25% v/v) adjuvant) and five angles of spray nozzle in relation to offset application (-30°, -15°, 90°, +15° and +30°). In Ipomea grandifolia leaves, the distribution and drops deposition of a tracer solution were evaluated by using scores visual and spectrophotometer process. In hydro sensible papers, volumetric medium diameter (VMD), density (cm2 ) and drops medium diameter, covered area (%) and application fees (L ha-1) were evaluated through e-SprinkleTM software. Aterbane BRTM (0.25% v/v) presence or absence, associated or no, to spray nozzles offset did not provide significant differences in I. grandifolia spray deposition. The use of artificial targets presented applicative technical limitations in relation to the use of natural ones as study matrix. Deposit and distribution variables esteem distinct behaviours, independent of target nature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to evaluate the quality of spray droplet spectrum on coffee tree, by using different equipments and syrup volumes. The experiment was set up in a coffee farm, Acaiá variety, Campos Gerais city, MG, Brazil. The treatments were three syrup volumes (150, 300 and 600 L/ha). The lower volume was sprayed with the pneumatic sprayer Martignani, Whirlwind B612 Autonom-Trac mode, and the other volume rates using the conventional hydraulic sprayer to coffee tree. It was possible concludes that the spray volume can be reduced in applications on coffee tree using the pneumatic sprayer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die vorliegende Dissertation behandelt den anomalen Sektor bzw. den Sektor ungerader innerer Parität in mesonischer chiraler Störungsrechnung (mesonische ChPT) bis zur chiralen Ordnung O(q^6). Auf eine Einführung in die Quantenchromodynamik (QCD) und ihrer Verknüpfung mit der chiralen Symmetrie folgt die Betrachtung der mesonischen ChPT im Sektor gerader sowie ungerader innerer Parität bis zur Ordnung O(q^4). Der sogenannte Wess-Zumino-Witten Term, welcher den Einfluss der axialen Anomalie bezogen auf die ChPT widerspiegelt, wird studiert. Anschließend wird die allgemeinste Lagrangedichte der Ordnung O(q^6) im Sektor ungerader innerer Parität detailiert analysiert. Sie enthält in ihrer SU(3)-Formulierung 23 Niederenergiekonstanten(low-energy constant=LEC). Aus Sicht der ChPT sind diese LECs freie Parameter, die auf irgendeine Art und Weise fixiert werden müssen. Es wird herausgearbeitet, bei welchen Prozessen und in welchen Kombinationen die jeweiligen LECs auftreten. Daraufhin wird versucht so viele dieser LECs wie möglich mittels Vektormesondominanz (VMD) sowie experimenteller Daten abzuschätzen und anzupassen. Hierfür wird zuerst die Vorgehensweise einer konsistenten Rechnung im Sektor ungerader innerer Parität bis zur Ordnung O(q^6) studiert, gefolgt von der Berechnung von insgesamt vierzehn geeigneten Prozessen im Rahmen der ChPT bis zur Ordnung O(q^6). Unter Verwendung experimenteller Daten werden dreizehn der LECs angepasst, wobei gegenwärtig nicht bei allen betrachteten Prozessen experimentelle Daten zur Verfügung stehen. Die Ergebnisse werden diskutiert und Unterschiede bzw. Übereinstimmungen mit anderen Rechnungen herausgearbeitet. Zusammenfassend erhält man einen umfassenden Einblick in den Sektor ungerader innerer Parität in mesonischer ChPT bis zur Ordnung O(q^6).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rationale: Focal onset epileptic seizures are due to abnormal interactions between distributed brain areas. By estimating the cross-correlation matrix of multi-site intra-cerebral EEG recordings (iEEG), one can quantify these interactions. To assess the topology of the underlying functional network, the binary connectivity matrix has to be derived from the cross-correlation matrix by use of a threshold. Classically, a unique threshold is used that constrains the topology [1]. Our method aims to set the threshold in a data-driven way by separating genuine from random cross-correlation. We compare our approach to the fixed threshold method and study the dynamics of the functional topology. Methods: We investigate the iEEG of patients suffering from focal onset seizures who underwent evaluation for the possibility of surgery. The equal-time cross-correlation matrices are evaluated using a sliding time window. We then compare 3 approaches assessing the corresponding binary networks. For each time window: * Our parameter-free method derives from the cross-correlation strength matrix (CCS)[2]. It aims at disentangling genuine from random correlations (due to finite length and varying frequency content of the signals). In practice, a threshold is evaluated for each pair of channels independently, in a data-driven way. * The fixed mean degree (FMD) uses a unique threshold on the whole connectivity matrix so as to ensure a user defined mean degree. * The varying mean degree (VMD) uses the mean degree of the CCS network to set a unique threshold for the entire connectivity matrix. * Finally, the connectivity (c), connectedness (given by k, the number of disconnected sub-networks), mean global and local efficiencies (Eg, El, resp.) are computed from FMD, CCS, VMD, and their corresponding random and lattice networks. Results: Compared to FMD and VMD, CCS networks present: *topologies that are different in terms of c, k, Eg and El. *from the pre-ictal to the ictal and then post-ictal period, topological features time courses that are more stable within a period, and more contrasted from one period to the next. For CCS, pre-ictal connectivity is low, increases to a high level during the seizure, then decreases at offset. k shows a ‘‘U-curve’’ underlining the synchronization of all electrodes during the seizure. Eg and El time courses fluctuate between the corresponding random and lattice networks values in a reproducible manner. Conclusions: The definition of a data-driven threshold provides new insights into the topology of the epileptic functional networks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon nanotubes (CNTs) have recently emerged as promising candidates for electron field emission (FE) cathodes in integrated FE devices. These nanostructured carbon materials possess exceptional properties and their synthesis can be thoroughly controlled. Their integration into advanced electronic devices, including not only FE cathodes, but sensors, energy storage devices, and circuit components, has seen rapid growth in recent years. The results of the studies presented here demonstrate that the CNT field emitter is an excellent candidate for next generation vacuum microelectronics and related electron emission devices in several advanced applications.

The work presented in this study addresses determining factors that currently confine the performance and application of CNT-FE devices. Characterization studies and improvements to the FE properties of CNTs, along with Micro-Electro-Mechanical Systems (MEMS) design and fabrication, were utilized in achieving these goals. Important performance limiting parameters, including emitter lifetime and failure from poor substrate adhesion, are examined. The compatibility and integration of CNT emitters with the governing MEMS substrate (i.e., polycrystalline silicon), and its impact on these performance limiting parameters, are reported. CNT growth mechanisms and kinetics were investigated and compared to silicon (100) to improve the design of CNT emitter integrated MEMS based electronic devices, specifically in vacuum microelectronic device (VMD) applications.

Improved growth allowed for design and development of novel cold-cathode FE devices utilizing CNT field emitters. A chemical ionization (CI) source based on a CNT-FE electron source was developed and evaluated in a commercial desktop mass spectrometer for explosives trace detection. This work demonstrated the first reported use of a CNT-based ion source capable of collecting CI mass spectra. The CNT-FE source demonstrated low power requirements, pulsing capabilities, and average lifetimes of over 320 hours when operated in constant emission mode under elevated pressures, without sacrificing performance. Additionally, a novel packaged ion source for miniature mass spectrometer applications using CNT emitters, a MEMS based Nier-type geometry, and a Low Temperature Cofired Ceramic (LTCC) 3D scaffold with integrated ion optics were developed and characterized. While previous research has shown other devices capable of collecting ion currents on chip, this LTCC packaged MEMS micro-ion source demonstrated improvements in energy and angular dispersion as well as the ability to direct the ions out of the packaged source and towards a mass analyzer. Simulations and experimental design, fabrication, and characterization were used to make these improvements.

Finally, novel CNT-FE devices were developed to investigate their potential to perform as active circuit elements in VMD circuits. Difficulty integrating devices at micron-scales has hindered the use of vacuum electronic devices in integrated circuits, despite the unique advantages they offer in select applications. Using a combination of particle trajectory simulation and experimental characterization, device performance in an integrated platform was investigated. Solutions to the difficulties in operating multiple devices in close proximity and enhancing electron transmission (i.e., reducing grid loss) are explored in detail. A systematic and iterative process was used to develop isolation structures that reduced crosstalk between neighboring devices from 15% on average, to nearly zero. Innovative geometries and a new operational mode reduced grid loss by nearly threefold, thereby improving transmission of the emitted cathode current to the anode from 25% in initial designs to 70% on average. These performance enhancements are important enablers for larger scale integration and for the realization of complex vacuum microelectronic circuits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pesticides applications have been described by many researches as a very inefficient process. In some cases, there are reports that only 0.02% of the applied products are used for the effective control of the problem. The main factor that influences pesticides applications is the droplet size formed on spraying nozzles. Many parameters affects the dynamic of the droplets, like wind, temperature, relative humidity, and others. Small droplets are biologically more active, but they are affected by evaporation and drift. On the other hand, the great droplets do not promote a good distribution of the product on the target. In this sense, associated with the risk of non target areas contamination and with the high costs involved in applications, the knowledge of the droplet size is of fundamental importance in the application technology. When sophisticated technology for droplets analysis is unavailable, is common the use of artificial targets like water-sensitive paper to sample droplets. On field sampling, water-sensitive papers are placed on the trials where product will be applied. When droplets impinging on it, the yellow surface of this paper will be stained dark blue, making easy their recognition. Collected droplets on this papers have different kinds of sizes. In this sense, the determination of the droplet size distribution gives a mass distribution of the material and so, the efficience of the application of the product. The stains produced by droplets shows a spread factor proportional to their respectives initial sizes. One of methodologies to analyse the droplets is a counting and measure of the droplets made in microscope. The Porton N-G12 graticule, that shows equaly spaces class intervals on geometric progression of square 2, are coulpled to the lens of the microscope. The droplet size parameters frequently used are the Volumetric Median Diameter (VMD) and the Numeric Median Diameter. On VMD value, a representative droplets sample is divided in two equal parts of volume, in such away one part contains droplets of sizes smaller than VMD and the other part contains droplets of sizes greater that VMD. The same process is done to obtaining the NMD, which divide the sample in two equal parts in relation to the droplets size. The ratio between VMD and NMD allows the droplets uniformity evaluation. After that, the graphics of accumulated probability of the volume and size droplets are plotted on log scale paper (accumulated probability versus median diameter of each size class). The graphics provides the NMD on the x-axes point corresponding to the value of 50% founded on the y-axes. All this process is very slow and subjected to operator error. So, in order to decrease the difficulty envolved with droplets measuring it was developed a numeric model, implemented on easy and accessfull computational language, which allows approximate VMD and NMD values, with good precision. The inputs to this model are the frequences of the droplets sizes colected on the water-sensitive paper, observed on the Porton N-G12 graticule fitted on microscope. With these data, the accumulated distribution of the droplet medium volumes and sizes are evaluated. The graphics obtained by plotting this distributions allow to obtain the VMD and NMD using linear interpolation, seen that on the middle of the distributions the shape of the curves are linear. These values are essential to evaluate the uniformity of droplets and to estimate the volume deposited on the observed paper by the density (droplets/cm2). This methodology to estimate the droplets volume was developed by 11.0.94.224 Project of the CNPMA/EMBRAPA. Observed data of herbicides aerial spraying samples, realized by Project on Pelotas/RS county, were used to compare values obtained manual graphic method and with those obtained by model has shown, with great precision, the values of VMD and NMD on each sampled collector, allowing to estimate a quantities of deposited product and, by consequence, the quantities losses by drifty. The graphics of variability of VMD and NMD showed that the quantity of droplets that reachs the collectors had a short dispersion, while the deposited volume shows a great interval of variation, probably because the strong action of air turbulence on the droplets distribution, enfasizing the necessity of a deeper study to verify this influences on drift.