995 resultados para VIBRATIONAL PROPERTIES


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The capabilities of the mechanical resonator-based nanosensors in detecting ultra-small mass or force shifts have driven a continuing exploration of the palette of nanomaterials for such application purposes. Based on large-scale molecular dynamics simulations, we have assessed the applicability of a new class of carbon nanomaterials for nanoresonator usage, i.e. the single-wall carbon nanotube (SWNT) network. It is found that SWNT networks inherit excellent mechanical properties from the constituent SWNTs, possessing a high natural frequency. However, although a high quality factor is suggested from the simulation results, it is hard to obtain an unambiguous Q-factor due to the existence of vibration modes in addition to the dominant mode. The nonlinearities resulting from these extra vibration modes are found to exist uniformly under various testing conditions including different initial actuations and temperatures. Further testing shows that these modes can be effectively suppressed through the introduction of axial strain, leading to an extremely high quality factor in the order of 109 estimated from the SWNT network with 2% tensile strain. Additional studies indicate that the carbon rings connecting the SWNTs can also be used to alter the vibrational properties of the resulting network. This study suggests that the SWNT network can be a good candidate for applications as nanoresonators.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It is known that the vibrational spectra of beetle-type scanning tunneling microscopes with a total mass of ≈3–4 g contain extrinsic ‘rattling’ modes in the frequency range extending from 500 to 1700 Hz that interfere with image acquisition. These modes lie below the lowest calculated eigenfrequency of the beetle and it has been suggested that they arise from the inertial sliding of the beetle between surface asperities on the raceway. In this paper we describe some cross-coupling measurements that were performed on three home-built beetle-type STMs of two different designs. We provide evidence that suggests that for beetles with total masses of 12–15 g all the modes in the rattling range are intrinsic. This provides additional support for the notion that the vibrational properties of beetle-type scanning tunneling microscopes can be improved by increasing the contact pressure between the feet of the beetle and the raceway.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Low-energy electron diffraction, X-ray photoelectron spectroscopy, high-resolution electron energy-loss spectroscopy, scanning tunneling microscopy, and temperature-programmed reaction spectrometry results are reported for the structural and reactive behavior of alumina films grown on Pt(111) as a function of thickness and oxidation temperature. Submonolayer Al films undergo compete oxidation at 300 K, annealing at 1100 K resulting in formation of somewhat distorted crystalline gamma-alumina, Thicker deposits require 800 K oxidation to produce Al2O3, and these too undergo crystallization at 800 K, yielding islands of apparently undistorted gamma-alumina on the Pt(111) surface. Oxidation of a p(2 x 2) Pt3Al surface alloy occurs only at>800 K, resulting in Al extraction, These alumina films on Pt(lll) markedly increase the coverage of adsorbed SO4 resulting from SO2 chemisorption onto oxygen-precovered surfaces. This results in enhanced propane uptake and subsequent reactivity relative to SO4/Pt(111). A bifunctional mechanism is proposed to account for our observations, and the relevance of these to an understanding of the corresponding dispersed systems is discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The electronic and vibrational properties of CO adsorbed on Pt electrodes at different potentials have been studied, by using methods of self-consistent-charge discrete variational Xa (SCC-DV-Xa) cluster calculations and in situ FTir spectroscopy. Two new models have been developed and verified to be successful: (1) using a "metallic state cluster" to imitate a metal (electrode) surface; and (2) charging the cluster and shifting its Fermi level (e{lunate}) to simulate, according to the relation of -d e{lunate}e dE, quantitatively the variation of the electrode potential (E). It is shown that the binding of PtCO is dominated by the electric charge transfer of dp ? 2p, while that of s ? Pt is less important in this binding. The electron occupancy of the 2p orbital of CO weakens the CO bond and decreases the v. Variation of E mainly influences the charge transfer process of dp ? 2p, but hardly influences that of s ? Pt. A linear potential-dependence of v has been shown and the calculated dv/dE = 35.0 cm V. All results of calculations coincide with the ir experimental data. © 1993.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the finite field (FF) treatment of vibrational polarizabilities and hyperpolarizabilities, the field-free Eckart conditions must be enforced in order to prevent molecular reorientation during geometry optimization. These conditions are implemented for the first time. Our procedure facilities identification of field-induced internal coordinates that make the major contribution to the vibrational properties. Using only two of these coordinates, quantitative accuracy for nuclear relaxation polarizabilities and hyperpolarizabilities is achieved in π-conjugated systems. From these two coordinates a single most efficient natural conjugation coordinate (NCC) can be extracted. The limitations of this one coordinate approach are discussed. It is shown that the Eckart conditions can lead to an isotope effect that is comparable to the isotope effect on zero-point vibrational averaging, but with a different mass-dependence

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this work a systematic study of the dependence of the structural, electronic, and vibrational properties on nanoparticle size is performed. Based on our total energy calculations we identified three characteristic regimes associated with the nanoparticle`s dimensions: (i) below 1.5 nm (100 atoms) where remarkable molecular aspects are observed; (ii) between 1.5 and 2.0 nm (100 and 300 atoms) where the molecular behavior is influenced by the inner core crystal properties; and (iii) above 2.0 nm (more than 300 atoms) where the crystal properties are preponderant. In all considered regimes the nanoparticle`s surface modulates its properties. This modulation decreases with the increasing of the nanoparticle`s size.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The effect of manganese on the vibrational properties of Ga(1-x)Mn(x)N (0 <= x <= 0.18) films has been investigated by Raman scattering using 488.0 and 632.8 nm photon excitations. The first-order transverse and longitudinal optical GaN vibrational bands were observed in the whole composition range using both excitations, while the corresponding overtones, as well as a prominent peak located in 1238 cm(-1) (153.5 meV) were only observed in the Mn-containing films under 488.0 nm excitation. We propose that the peak observed at 1238 cm(-1) is due to resonant Mn local vibrational modes, the excitation process being related to electronic transitions involving the Mn acceptor band.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The structural and vibrational properties of nanocrystalline Ga1-xMnxN films deposited by reactive magnetron sputtering were analyzed in a wide composition range (0 < x < 0.18). The films were structurally characterized using x-ray diffraction with Rietveld refinement. The corresponding vibrational properties were investigated using micro-Raman and Fourier transform infrared spectroscopies. The films present a high crystallized fraction, crystallites having wurtzite structure, and high orientation texture with the c axis oriented perpendicular to the substrate surface. Rietveld analysis indicates that Mn atoms are incorporated substitutionally into Ga positions and show that the ionic character of cation-N bonds along the c axis is favored by the Mn incorporation. No evidence for Mn segregation or Mn rich phases was found in the composition range analyzed. Micro-Raman scattering spectra and infrared absorption experiments showed progressive changes with the increase of x and monotonic shifts of the GaN TO and LO peaks to lower frequencies. The structural and vibrational analyses are compared and the influence of Mn on the static and dynamic properties of the lattice is analyzed. (C) 2007 American Institute of Physics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The present work employs a set of complementary techniques to investigate the influence of outlying Ru(II) groups on the ground- and excited-state photophysical properties of free-base tetrapyridyl porphyrin (H(2)TPyP). Single pulse and, pulse train Z-scan techniques used M association with laser flash photolysis, absorbance and fluorescence spectroscopy, and fluorescence decay measurements, allowed us to conclude that the presence of outlying Ru(II) groups causes significant changes on both electronic structure and vibrational properties of porphyrin. Such modifications take place mainly due to the activation of. nonradiative decay channels responsible for the emission, quenching, as well as by favoring some vibrational modes in the light absorption process, It is also observed that, differently from what happens when the Ru(II) is placed at the center of the macrocycle, the peripheral groups cause an increase of the intersystem crossing processes, probably due to the structural distortion of the ring that implies a worse spin orbit coupling, responsible for the intersystem crossing mechanism.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Oktaedrisch koordinierte Übergangsmetalle mit der Elektronenkonfiguration [Ar]3d4 - 3d7 können in zwei unterschiedlichen elektronischen Zuständen existieren: im High-Spin (HS) oder im Low-Spin (LS) Zustand. Zum Beispiel kann Fe(II) in 1A1g (LS) oder 5T2g (HS) Konfiguration auftreten.Besonderes Interesse besteht in der Aufklärung des Mechanismus der kooperativen Wechselwirkung, die den Spinübergang im Festkörper bestimmt. Hierzu müssen zunächst die internen Freiheitsgrade der molekularen Einheiten bekannt sein. Besonders der Beitrag der molekularen Schwingungen zur Entropiedifferenz, die die Triebkraft des Spinübergangs darstellt, ist von entscheidender Bedeutung. Bisher existieren nur wenige detaillierte Untersuchungen zu den Schwingungseigenschaften der Spincrossovermoleküle.In Rahmen der vorliegenden Arbeit wurden die Schwingungseigenschaften einiger Komplexverbindungen, die Spincrossover zeigen, im Detail untersucht. Dazu wurden temperaturabhängige Raman-, Fern- und Mittel-Infrarot-Spektroskopie, Isotopensubstitution und Normalkoordinatenanalysen (NKA) in Verbindung mit Dichtefunktional-Rechnungen (DFT) verwendet.Die gewonnenen Werte der zugeordneten Schwingungsfrequenzen und die bestimmten Kraftkonstantenänderungen können nun zur Verfeinerung von theoretischen Modellen zur Beschreibung des Spinübergangs verwendet werden.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this PhD study, the effects of the cation substitutions on the physical properties of pyroxenes have been discussed. The results of this work extend the knowledge on pyroxenes with different chemical compositions. These properties might be used in the development of ceramic pigments, advanced materials and for the mineralogical phase identification. First of all, the crystallographic differences between Ge and Si pyroxenes have been examined. The structure of C2/c Ca rich Ge clinopyroxenes is very close to the low pressure C2/c structural configuration found in Ca-rich Si-pyroxenes. The shear of the unit cell is very similar, and the difference between a Ge end member and the corresponding Si-rich one is less than 1°. Instead, a remarkable difference exists between Ca-poor Si and Ge clinopyroxenes. First, Ca-poor Ge pyroxenes do not display a P21/c symmetry, but retain the C2/c symmetry; second, the observed C2/c structure shows, at room pressure, the configuration with highly kinked tetrahedral chains characteristic of the high pressure C2/c symmetry of Si Ca-poor pyroxenes. In orthopyroxenes, with Pbca symmetry, Ge-pyroxenes have volume larger than Si-pyroxenes. Samples along the system CaCoGe2O6 - CoCoGe2O6 have been synthesized at three different temperatures: 1050 °C, 1200 °C and 1250 °C. The aim of these solid state syntheses was to obtain a solid solution at ambient pressure, since the analogues Si-system needs high pressure. Unfortunately, very limited solution occurs because the structure forms of the two end member (high temperature for CaCoGe2O6 and high pressure CoCoGe2O6) are incompatible. The phase diagram of this system has been sketched and compared to that of Si. The cobalt end member (CoCoGe2O6) is stable at ambient pressure in two symmetries: at 1050 °C C2/c and 1200 °C Pbca. The impurity phase formed during these experiments is cobalt spinel. Raman spectroscopy has been used to investigate the vibrational properties of Ca-pyroxenes CaCoGe2O6, CaMgGe2O6, CaMgSi2O6 and CaCoSi2O6. A comparison between silicate and germanate pyroxenes shows significant changes in peak positions of the corresponding modes caused mainly by the difference of the Ge-Si atomic weight along with the distortion and compression of the coordination polyhedra. Red shift in Raman spectra of germanates has been calculated by a rough scale factor calculated by a simple harmonic oscillator model, considering the different bond lengths for 4-coordinated Si ~ 1.60- 1.65 Å vs Ge–O distance ~1.70 - 1.80 Å. The Raman spectra of CaMgGe2O6 and CaCoGe2O6 have been classified, in analogy with silicate (Wang et al., 2001) counterparts, in different ranges: - R1 (880-640 cm-1): strong T-O stretching modes of Ge and non-bridging O1 and O2 atoms within the GeO4 tetrahedron; - R2 (640-480 cm-1): stretching/bending modes of Ge-Obr-Ge bonds (chain stretching and chain bending); - R4 (480-360 cm-1): O-Ge-O vibrations; - R3 (360-240 cm-1): motions of the cations in M2 and M1 sites correlated with tetrahedral chain motion and tilting tetrahedra; - R5 (below 240 cm-1): lattice modes. The largest shift with respect to CaMgSi2O6 - CaCoSi2O6 is shown by the T-O stretching and chain modes. High-pressure Raman spectroscopy (up to about 8 GPa) on the same samples of Ca-pyroxenes using an ETH-type diamond anvil cell shows no phase transition within the P-ranges investigated, as all the peak positions vary linearly as a function of pressure. Our data confirm previous experimental findings on Si-diopside (Chopelas and Serghiou, 2000). In the investigated samples, all the Raman peaks shift upon compression, but the major changes in wavenumber with pressure are attributed to the chain bending (Ge-Obr-Ge bonds) and tetrahedra stretching modes (Ge-Onbr). Upon compression, the kinking angle, the bond lengths and T-T distances between tetrahedra decrease and consequently the wavenumber of the bending chain mode and tetrahedra stretching mode increases. Ge-pyroxenes show the higher P-induced peak-position shifts, being more compressible than corresponding silicates. The vibrational properties of CaM2+Ge2O6 (M2+ =Mg, Mn, Fe, Co, Ni, Zn) are reported for the first time. The wavenumber of Ge-Obr-Ge bending modes decreases linearly with increasing ionic radius of the M1 cation. No simple correlation has been found with M1 atomic mass or size or crystallographic parameters for the peak at ~850 cm-1 and in the low wavenumber regions. The magnetic properties of the system CaCoSi2O6 - CoCoSi2O6 have been investigated by magnetometry. The join is always characterized by 1 a.p.f.u. of cobalt in M1 site and this causes a pure collinear antiferromagnetic behaviour of the intra-chain superexchange interaction involving Co ions detected in all the measurements, while the magnetic order developed by the cobalt ions in M2 site (intra-chain) is affected by weak ferromagnetism, due to the non-collinearity of their antiferromagnetic interaction. In magnetically ordered systems, this non-collinearity effect promotes a spin canting of anti-parallel aligned magnetic moments and thus is a source of weak ferromagnetic behaviour in an antiferromagnetic. The weak ferromagnetism can be observed only for the samples with Co content higher than 0.5 a.p.f.u. in M2, when the concentration is sufficiently high to create a long range order along the M2 chain which is magnetically independent of M1 chain. The ferromagnetism was detected both in the M(T) at 10 Oe and M(H).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based on its enticing properties, graphene has been envisioned with applications in the area of electronics, photonics, sensors, bioapplications and others. To facilitate various applications, doping has been frequently used to manipulate the properties of graphene. Despite a number of studies conducted on doped graphene regarding its electrical and chemical properties, the impact of doping on the mechanical properties of graphene has been rarely discussed. A systematic study of the vibrational properties of graphene doped with nitrogen and boron is performed by means of a molecular dynamics simulation. The influence from different density or species of dopants has been assessed. It is found that the impacts on the quality factor, Q, resulting from different densities of dopants vary greatly, while the influence on the resonance frequency is insignificant. The reduction of the resonance frequency caused by doping with boron only is larger than the reduction caused by doping with both boron and nitrogen. This study gives a fundamental understanding of the resonance of graphene with different dopants, which may benefit their application as resonators.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two beetle-type scanning tunneling microscopes are described. Both designs have the thermal stability of the Besocke beetle and the simplicity of the Wilms beetle. Moreover, sample holders were designed that also allow both semiconductor wafers and metal single crystals to be studied. The coarse approach is a linear motion of the beetle towards the sample using inertial slip–stick motion. Ten wires are required to control the position of the beetle and scanner and measure the tunneling current. The two beetles were built with different sized piezolegs, and the vibrational properties of both beetles were studied in detail. It was found, in agreement with previous work, that the beetle bending mode is the lowest principal eigenmode. However, in contrast to previous vibrational studies of beetle-type scanning tunneling microscopes, we found that the beetles did not have the “rattling” modes that are thought to arise from the beetle sliding or rocking between surface asperities on the raceway. The mass of our beetles is 3–4 times larger than the mass of beetles where rattling modes have been observed. We conjecture that the mass of our beetles is above a “critical beetle mass.” This is defined to be the beetle mass that attenuates the rattling modes by elastically deforming the contact region to the extent that the rattling modes cannot be identified as distinct modes in cross-coupling measurements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Doping graphene with electron donating or accepting molecules is an interesting approach to introduce carriers into it, analogous to electrochemical doping accomplished in graphene when used in a field-effect transistor. Here, we use first-principles density-functional theory to determine changes in the electronic-structure and vibrational properties of graphene that arise from the adsorption of aromatic molecules such as aniline and nitrobenzene. Identifying the roles of various mechanisms of chemical interaction between graphene and a molecule, we bring out the contrast between electrochemical and molecular doping of graphene. Our estimates of various contributions to shifts in the Raman-active modes of graphene with molecular doping are fundamental to the possible use of Raman spectroscopy in (a) characterization of the nature and concentration of carriers in graphene with molecular doping, and (b) graphene-based chemical sensors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper contains a review of the physical properties of the undoped and alkali-doped C60 materials, including their crystal structure, electronic, optical and vibrational properties and the effect of pressure on the crystal and electronic structure. The mechanisms of superconductivity in alkali-doped C60 in terms of phonon mediated electron pairing vis-a-vis electronic interaction effects are discussed.