58 resultados para VDJ Recombinases
Resumo:
Proteins that catalyse homologous recombination have been identified in all living organisms and are essential for the repair of damaged DNA as well as for the generation of genetic diversity. In bacteria homologous recombination is performed by the RecA protein, whereas in the eukarya a related protein called Rad51 is required to catalyse recombination and repair. More recently, archaeal homologues of RecA/Rad51 (RadA) have been identified and isolated. In this work we have cloned and purified the RadA protein from the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus and characterised its in vitro activities. We show that (i) RadA protein forms ring structures in solution and binds single- but not double-stranded DNA to form nucleoprotein filaments, (ii) RadA is a single-stranded DNA-dependent ATPase at elevated temperatures, and (iii) RadA catalyses efficient D-loop formation and strand exchange at temperatures of 60-70 degrees C. Finally, we have used electron microscopy to visualise RadA-mediated joint molecules, the intermediates of homologous recombination. Intriguingly, RadA shares properties of both the bacterial RecA and eukaryotic Rad51 recombinases.
Resumo:
The genome size, complexity, and ploidy of the arbuscular mycorrhizal fungus (AMF) Glomus intraradices was determined using flow cytometry, reassociation kinetics, and genomic reconstruction. Nuclei of G. intraradices from in vitro culture, were analyzed by flow cytometry. The estimated average length of DNA per nucleus was 14.07+/-3.52 Mb. Reassociation kinetics on G. intraradices DNA indicated a haploid genome size of approximately 16.54 Mb, comprising 88.36% single copy DNA, 1.59% repetitive DNA, and 10.05% fold-back DNA. To determine ploidy, the DNA content per nucleus measured by flow cytometry was compared with the genome estimate of reassociation kinetics. G. intraradices was found to have a DNA index (DNA per nucleus per haploid genome size) of approximately 0.9, indicating that it is haploid. Genomic DNA of G. intraradices was also analyzed by genomic reconstruction using four genes (Malate synthase, RecA, Rad32, and Hsp88). Because we used flow cytometry and reassociation kinetics to reveal the genome size of G. intraradices and show that it is haploid, then a similar value for genome size should be found when using genomic reconstruction as long as the genes studied are single copy. The average genome size estimate was 15.74+/-1.69 Mb indicating that these four genes are single copy per haploid genome and per nucleus of G. intraradices. Our results show that the genome size of G. intraradices is much smaller than estimates of other AMF and that the unusually high within-spore genetic variation that is seen in this fungus cannot be due to high ploidy.
Resumo:
We systematically investigated the effect of heterology on RecA-mediated strand exchange between double-stranded linear and single-stranded circular DNA. Strand exchange took place through heterologies of up to 150-200 base pairs when the insertion was at the proximal (initiating) end of the duplex DNA but was completely blocked by an insert of only 22 base pairs placed at the distal end of the duplex. In the case of medial heterology created by insertion either in the duplex or the single-stranded DNA, the ability of RecA to exchange strands decreased as the heterology was shifted toward the distal end of the duplex. These results suggest that two different strand exchange mechanisms operate in the proximal and distal portions of the duplex substrate.
Resumo:
The role of ATP hydrolysis during the RecA-mediated recombination reaction is addressed in this paper. Recent studies indicated that the RecA-promoted DNA strand exchange between completely homologous double- and single-stranded DNA can be very efficient in the absence of ATP hydrolysis. In this work we demonstrate that the energy derived from the ATP hydrolysis is strictly needed to drive the DNA strand exchange through the regions where the interacting DNA molecules are not in a homologous register. Therefore, in addition to the role of the ATP hydrolysis in promoting the dissociation of RecA from the products of the recombination reaction, as described earlier, ATP hydrolysis also plays a crucial role in the actual process of strand exchange, provided that the lack of homologous register obstructs the process of branch migration.
Resumo:
During T cell development in the thymus, T cell receptor (TCR) alpha, beta, gamma, and delta genes are rearranged and expressed. TCR rearrangement strictly depends upon the coordinate activity of two recombinase activating genes, Rag-1 and Rag-2. In this study we have followed the expression of these genes at different stages of intrathymic development. The results indicate that there are two periods of high Rag-1 and Rag-2 mRNA expression. The first wave peaks early at the CD25+CD4-CD8-CD3- stage of development and coincides with the initial appearance of transcripts derived from fully rearranged TCR beta, gamma, and delta genes, whereas the second wave occurs later at the CD4+CD8+ stage coincident with full-length TCR alpha mRNA expression. Active downregulation of Rag-1 and Rag-2 mRNA expression appears to occur in vivo between the two peaks of recombinase activity. This phenomenon can be mimicked in vitro in response to artificial stimuli such as phorbol myristate acetate and calcium ionophore. Collectively our data suggest that recombinase expression is actively regulated during early thymus development independently of cell surface expression of a mature heterodimeric TCR protein complex.
Resumo:
Staphylococcus aureus est un pathogène humain majeur ayant développé des résistances contre la quasi totalité des antibiotiques disponibles, incluant la très importante famille des β- lactamines. La résistance à cette classe d'antibiotiques est conférée par la « Staphylococcal Cassette Chromosome mec » (SCCmec), qui est un élément génétique mobile capable de s'insérer dans le chromosome bactérien et capable d'être transféré horizontalement chez d'autres staphylocoques. Le mécanisme moléculaire impliqué dans ce transfert horizontal demeure largement inconnu. L'une des premières étapes du transfert est l'excision du SCC mec du chromosome bactérien. Cette excision est promue par des enzymes codées par l'élément SCCmec lui- même et appelées de ce fait « Cassette Chromosome Recombinases » (Ccr). L'un des buts de ce travail de thèse a été de comprendre la régulation de l'expression des gènes codant pour les Ccr recombinases. En utilisant des outils moléculaires originaux, nous avons été en mesure de démontrer en premier lieu que les Ccr recombinases étaient exprimées de façon « bistable », c'est à dire qu'uniquement quelques pourcents de cellules dans une population exprimaient ces gènes à un temps donné. Dans un deuxième temps, nous avons également démontré que l'expression de ces gènes était régulée par des facteurs étrangers au SCC mec. L'expression bistable des recombinases est un concept important. Effectivement, cela permet à la majorité des cellules d'une population de conserver l'élément SCC mec, alors que seulement une petite fraction le perd afin de le rendre disponible pour un transfert. Ainsi, alors que l'élément SCC mec continue de se propager avec la multiplication des bactéries Staphylococcus aureus résistant à la méticilline (SARM), il peut être simultanément transmis à des souches susceptibles (Staphylococcus aureus susceptible à la méticilline, SASM), entraînant l'apparition de nouveaux SARM. De façon très intéressante, le fait que cette bistabilité est contrôlée par les bactéries, et non le SCCmec lui-même, montre que la décision de transférer ou non la cassette SCC mec appartient à la bactérie. En conséquence, il doit exister dans la nature des souches qui sont plus ou moins aptes à effectuer ce transfert. En nous appuyant sur ces observations, nous avons montré que l'excision du SCC mec était effectivement régulée de façon très étroite au cours de la division cellulaire, et ne se passait que pendant un temps limité au début de la croissance. Ce résultat est compatible avec une régulation génétique commandée par la densité cellulaire, qui pourrait être dépendante de la production de signaux extracellulaires, du type que l'on rencontre dans le quorum sensing. Les signaux hypothétiques entraînant l'excision du SCC mec restent inconnus à l'heure actuelle. La connaissance de ces signaux pourrait se révéler très importante afin de développer des stratégies pour interférer avec la dissémination de la résistance au β-lactamines. Deux sujets additionnels ont été logiquement investigués au vu de ces premiers résultats. Premièrement, si certaines souches de SARM sont plus ou moins aptes à déclencher l'excision du SCC mec, de même certaines souches de SASM devraient être plus ou moins aptes à acquérir cet élément. Deuxièmement, afin d'étudier ces mécanismes de transfert au niveau épidémiologique, il nous a été nécessaire de développer des outils nous permettant d'explorer le phénomène à une plus large échelle. Concernant le premier point, il a été postulé que certains SASM seraient réfractaires à l'intégration génomique d'un SCC mec en raison de polymorphismes particuliers à proximité du site d'insertion chromosomique (attB). En étudiant plus de 40 isolais de S. aureus, provenant de porteurs sains, nous avons confirmé ce polymorphisme dans l'environnement à'attB. De plus, nous avons pu montrer que ces régions polymorphiques ont évolué parallèlement à des groupes phylogénétiques bien connus. Ainsi, si des telles régions réfractaires à l'intégration de SCC mec existent, celles-ci devraient ségréger dans des complexes clonaux bien définis qui devraient être facilement identifiables au niveau épidémiologique. Concernant le second point, nous avons été capables de construire un système rapporteur de l'excision du SCCmec, en utilisant un plasmide à faible copie. Ce système consistait en un promoteur fort et un gène codant pour une protéine verte fluorescente (GFP) sous le contrôle d'un promoteur fort séparés à l'aide d'un élément SCC artificiel portant trois terminateurs de transcription. Ainsi, la fluorescence ne s'exprime que si l'élément SCC est excisé du plasmide. Ce système a été testé avec succès dans plusieurs types de staphylocoques, et est actuellement évalué dans d'autres souches et conditions stimulant ou inhibant l'excision. De manière générale, cette dissertation représente parcours scientifique à travers plusieurs aspects d'un problème de santé publique majeur en rapport avec la résistance bactérienne aux antibiotiques. Ce travail s'attaque à des problèmes fondamentaux concernant le transfert horizontal de l'élément SCC mec. De plus, il s'intéresse à des aspects plus généraux de cet élément génétique mobile qui pourraient se révéler très importants en terme de mouvement de gènes au sein des staphylocoques, voir d'autres bactéries gram-positives. Finalement ce travail de thèse met en place le fondamentaux requis pour des recherches futures visant à interférer avec le transfert horizontal de la résistance aux β-lactamines. - Staphylococcus aureus is a major human pathogen. Moreover, S. aureus have developed resistance to almost all available antibiotics, including the important family of β-lactam molecules. Intrinsic resistance to β-lactams is conferred by the Staphylococcal Cassette Chromosome mec (SCCmec), which is a mobile genomic island that inserts into the staphylococcal chromosome and can be horizontally transferred into other staphylococci. However, little is known about the molecular mechanisms involved in this horizontal transfer into naïve strains. One of the first steps in SCC mec horizontal transfer is its excision from the chromosome. Excision is mediated by recombinase enzymes that are encoded by SCC mec itself, and named accordingly Ccr recombinases - for Cassette Chromosome recombinases. One goal of this thesis was to understand the regulation these recombinase genes. By using original molecular tools we could demonstrate first that the Ccr recombinases were expressed in a "bistable" manner, i.e. in only few percentages of the bacterial cells at a given time, and second that they were regulated by determinants that were not encoded on the SCC mec element, but elsewhere on the staphylococcal genome. "Bistable" expression Ccr recombinases is an important concept. It allows SCC mec to be excised and thus available for horizontal transfer, while ensuring that only some cells, but not the whole population, loose their valuable SCC mec genes. Thus, while the SCC mec element expands with the multiplication of the MRSA colony, it can simultaneously be transmitted into methicillin-susceptible S. aureus (MSSA), which convert into new MRSA. Most interestingly, the fact that bistability was regulated by the cells, rather than by SCC mec, indicates that it was the choice of the bacteria to trigger or not SCC mec transfer. As a consequence, there must be, in nature, staphylococcal strains that are more or less prone to sustain SCC mec transfer. Following these seminal observations we found that excision was indeed tightly regulated during bacterial division, and occurred only during a limited period of time at the beginning of bacterial growth. This is compatible with cell-density mediated gene regulation, and may depend on the production of extracellular signal molecules that transmit appropriate orders to neighboring cells, such as in quorum sensing. The potential signal triggering SCCmec excision is as yet unknown. However, it could be critical in promoting the horizontal transfer of methicillin resistance, or for the possible development of means to interfere with it. Two additional hypothesis were logically investigated in the view of these first results. First, if some strains of MRSA might be more prone than others to promote SCC mec excision, then some strains of MS SA might be more or less prone to acquire the element as well. Second, to investigate these multiple mechanisms at an epidemiological level, one would need to develop tools amenable to explore S. aureus strains at a larger scale. Regarding the first issue, it was postulated by others that some MSSA might be refractory to SCC mec integration because they had peculiar DNA polymorphisms in the vicinity of the site-specific chromosomal entry point {attB) of SCC mec. By studying >40 S. aureus isolates from healthy carriers, we confirmed the polymorphism of the attB environment. Moreover, we could show that these polymorphic regions co-evolved with well-known phylogenic clonal clusters. Therefore, if SCCwec-refractory attB environments exist, then they would segregate in well- defined S. aureus clonal clusters that would be easy to identify at the epidemiological level. Regarding the second issue, we were able to construct a new excision reporter system in a low copy number S. aureus plasmid. The reporter system consists in a strong promoter driving a green fluorescent protein {gfp) gene, separated by an artificial SCC-like element carrying three transcriptional terminators. Thus, fluorescence is not expressed unless the SCC-like element is excised. The system has been successfully tested in several aureus and non- aureus staphylococci, and is now being applied to more strains and various excision- triggering or inhibiting conditions. Altogether the dissertation is a scientific journey through various aspects of a salient medical problem with regard to antibiotic resistance and public health threat. The research work tackles fundamental issues about the mechanisms of horizontal transfer of the SCC mec element. Moreover, it also addresses more general features of this mobile element, which could be of larger importance with regard to gene trafficking in staphylococci, and maybe other gram-positive bacteria. Finally, the dissertation sets the fundamentals for future work and possible new ways to interfere with the horizontal transfer of methicillin resistance.
Resumo:
AIMS/HYPOTHESIS: Pancreatic beta cells play a central role in the control of glucose homeostasis by secreting insulin to stimulate glucose uptake by peripheral tissues. Understanding the molecular mechanisms that control beta cell function and plasticity has critical implications for the pathophysiology and therapy of major forms of diabetes. Selective gene inactivation in pancreatic beta cells, using the Cre-lox system, is a powerful approach to assess the role of particular genes in beta cells and their impact on whole body glucose homeostasis. Several Cre recombinase (Cre) deleter mice have been established to allow inactivation of genes in beta cells, but many show non-specific recombination in other cell types, often in the brain. METHODS: We describe the generation of Ins1 (Cre) and Ins1 (CreERT2) mice in which the Cre or Cre-oestrogen receptor fusion protein (CreERT2) recombinases have been introduced at the initiation codon of the Ins1 gene. RESULTS: We show that Ins1 (Cre) mice induce efficient and selective recombination of floxed genes in beta cells from the time of birth, with no recombination in the central nervous system. These mice have normal body weight and glucose homeostasis. Furthermore, we show that tamoxifen treatment of adult Ins1 (CreERT2) mice crossed with Rosa26-tdTomato mice induces efficient recombination in beta cells. CONCLUSIONS/INTERPRETATION: These two strains of deleter mice are useful new resources to investigate the molecular physiology of pancreatic beta cells.
Resumo:
Paul Howard-Flanders et al proposed a molecular model of RecA-mediated recombination reaction six years ago. How does this model stand at present? In answering this question, we focus on two leading ideas of the original model, namely the proposal of the coaxial arrangement of the aligned DNA molecules within helical RecA filaments and the proposal of the ATP independence of the pairing stage of the recombination reaction. Results obtained after the model was proposed are reviewed and compared with these original assumptions and postulates of the model. EM visualization of recombining DNA molecules, studies of the energetics of the RecA-mediated recombination reaction and biochemical analysis of deproteinized joint molecules are fully consistent with a triple-stranded DNA arrangement during the RecA-mediated recombination reaction and demonstrate the ATP independence of the pairing stage of the reaction.
Resumo:
T cells belong to two distinct lineages expressing either alpha beta or gamma delta TCR. During alpha beta T cell development, it is clearly established that productive rearrangement at the TCR beta locus in immature precursor cells leads to the expression of a pre-TCR complex. Signaling through the pre-TCR results in the selective proliferation and maturation of TCR beta+ cells, a process that is known as beta-selection. However, the potential role of beta-selection during gamma delta T cell development is controversial. Whereas PCR-RFLP and sequencing techniques have provided evidence for a bias toward in-frame VDJ beta rearrangements in gamma delta cells (consistent with beta-selection), gamma delta cells apparently develop normally in mice that are unable to assemble a pre-TCR complex due to a deficiency in TCR beta or pT alpha genes. In this report, we have directly addressed the physiologic significance of beta-selection during gamma delta cell development in normal mice by quantitating intracellular TCR beta protein in gamma delta cells and correlating its presence with cell cycle status. Our results indicate that beta-selection plays a significant (although limited) role in gamma delta cell development by selectively amplifying a minor subset of gamma delta precursor cells with productively rearranged TCR beta genes.
Resumo:
RecA protein in bacteria and its eukaryotic homolog Rad51 protein are responsible for initiation of strand exchange between homologous DNA molecules. This process is crucial for homologous recombination, the repair of certain types of DNA damage and for the reinitiation of DNA replication on collapsed replication forks. We show here, using two different types of in vitro assays, that in the absence of ATP hydrolysis RecA-mediated strand exchange traverses small substitutional heterologies between the interacting DNAs, whereas small deletions or insertions block the ongoing strand exchange. We discuss evolutionary implications of RecA selectivity against insertions and deletions and propose a molecular mechanism by which RecA can exert this selectivity.
Resumo:
The 20 amino acid residue peptides derived from RecA loop L2 have been shown to be the pairing domain of RecA. The peptides bind to ss- and dsDNA, unstack ssDNA, and pair the ssDNA to its homologous target in a duplex DNA. As shown by circular dichroism, upon binding to DNA the disordered peptides adopt a beta-structure conformation. Here we show that the conformational change of the peptide from random coil to beta-structure is important in binding ss- and dsDNA. The beta-structure in the DNA pairing peptides can be induced by many environmental conditions such as high pH, high concentration, and non-micellar sodium dodecyl sulfate (6 mM). This behavior indicates an intrinsic property of these peptides to form a beta-structure. A beta-structure model for the loop L2 of RecA protein when bound to DNA is thus proposed. The fact that aromatic residues at the central position 203 strongly modulate the peptide binding to DNA and subsequent biochemical activities can be accounted for by the direct effect of the aromatic amino acids on the peptide conformational change. The DNA-pairing domain of RecA visualized by electron microscopy self-assembles into a filamentous structure like RecA. The relevance of such a peptide filamentous structure to the structure of RecA when bound to DNA is discussed.
Resumo:
In bacteria, genetic recombination is catalysed by RecA protein, the product of the recA gene. A human gene that shares homology with Escherichia coli recA (and its yeast homologue RAD51) has been cloned from a testis cDNA library, and its 37 kDa product (hRad51) purified to homogeneity. The human Rad51 protein binds to single- and double-stranded DNA and exhibits DNA-dependent ATPase activity. Using a topological assay, we demonstrate that hRad51 underwinds duplex DNA, in a reaction dependent upon the presence of ATP or its non-hydrolysable analogue ATP gamma S. Complexes formed with single- and double-stranded DNA have been observed by electron microscopy following negative staining. With nicked duplex DNA, hRad51 forms helical nucleoprotein filaments which exhibit the striated appearance characteristic of RecA or yeast Rad51 filaments. Contour length measurements indicate that the DNA is underwound and extended within the nucleoprotein complex. In contrast to yeast Rad51 protein, human Rad51 forms filaments with single-stranded DNA in the presence of ATP/ATP gamma S. These resemble the inactive form of the RecA filament which is observed in the absence of a nucleotide cofactor.
Resumo:
Eukaryotic cells encode two homologs of Escherichia coli RecA protein, Rad51 and Dmc1, which are required for meiotic recombination. Rad51, like E.coli RecA, forms helical nucleoprotein filaments that promote joint molecule and heteroduplex DNA formation. Electron microscopy reveals that the human meiosis-specific recombinase Dmc1 forms ring structures that bind single-stranded (ss) and double-stranded (ds) DNA. The protein binds preferentially to ssDNA tails and gaps in duplex DNA. hDmc1-ssDNA complexes exhibit an irregular, often compacted structure, and promote strand-transfer reactions with homologous duplex DNA. hDmc1 binds duplex DNA with reduced affinity to form nucleoprotein complexes. In contrast to helical RecA/Rad51 filaments, however, Dmc1 filaments are composed of a linear array of stacked protein rings. Consistent with the requirement for two recombinases in meiotic recombination, hDmc1 interacts directly with hRad51.
Resumo:
T cells belong to two separate lineages based on surface expression of alpha beta or gamma delta T cell receptors (TCR). Since during thymus development TCR beta, gamma, and delta genes rearrange before alpha genes, and gamma delta cells appear earlier than alpha beta cells, it has been assumed that gamma delta cells are devoid of TCR alpha rearrangements. We show here that this is not the case, since mature adult, but not fetal, thymic gamma delta cells undergo VJ alpha rearrangements more frequently than immature alpha beta lineage thymic precursors. Sequence analysis shows VJ alpha rearrangements in gamma delta cells to be mostly (70%) nonproductive. Furthermore, VJ alpha rearrangements in gamma delta cells are transcribed normally and, as shown by analysis of TCR beta-/- mice, occur independently of productive VDJ beta rearrangements. These data are interpreted in the context of a model in which precursors of alpha beta and gamma delta cells differ in their ability to express a functional pre-TCR complex.
Resumo:
In a paper in this week's issue of Science, Voloshin et al. (p. 868) show that a 20-amino acid peptide from RecA, a bacterial protein that repairs and recombines DNA, can mediate DNA strand exchange--one of the functions of the RecA protein. Stasiak discusses why this result is surprising and what the rest of the RecA protein is for.