889 resultados para User-based sesign
Resumo:
The objective of this Bachelor's Thesis is to find out the role of social media in the B-to-B marketing environment of the information technology industry and to discover how IT-firms utilize social media as a part of their customer reference marketing. To reach the objectives the concepts of customer reference marketing and social media are determined. Customer reference marketing can be characterized as one of the most practically relevant but academically relatively overlooked ways in which a company can leverage its customers and delivered solutions and use them as references in its marketing activities. We will cover which external and internal functions customer references have, that contribute to the growth and performance of B-to-B firms. We also address the three mechanisms of customer reference marketing which are 'status transfer', 'validation through testimonials' and 'demonstration of experience and prior performance'. The concept of social media stands for social interaction and creation of user-based content which exclusively occurs through Internet. The social media are excellent tools for networking because of the fast and easy access, easy interaction and vast amount of multimedia attributes. The allocation of social media is determined. The case company helps clarify the specific characteristics of social media usage as part of customer-reference-marketing activities. For IT-firms the best channels to utilize social media in their customer reference marketing activities are publishing and distribution services of content and networking services.
Resumo:
Työn tavoitteena oli suunnitella korkeakoululiikunnan palvelukonsepti, jonka tärkein tehtävä on edistää korkeakoulukampuksen opiskelijoiden opiskelukykyä, hyvinvointia, terveyttä ja yhteisöllisyyttä monipuolisia liikunta- ja hyvinvonitipalveluja tuottamalla. Merkittävimmät tulokset empiriaosuudessa saatiin haastattelu- ja kyselytutkimuksilla, jotka toteutettiin korkeakoululiikuntakonseptin paikallisille käyttäjille ja kahden vertaisoppimispaikkakunnan korkeakoululiikunnan työntekijöille. Tämän aineiston ja jo olemassa olevien teoreettisten viitekehysten avulla pystyttiin suunnittelemaan paikallinen, käyttäjälähtöinen konsepti. Tutkimus sisälti myös erillisten teorioiden ja empiiristen havaintojen yhdistämistä. Työn tuloksena syntynyt palvelukonsepti toteutettiin soveltavalla tutkimuksella, missä yhdisteltiin erilaisia tutkimusmetodeja tavoitteena olleen lopputuloksen saamiseksi. Tuotoksena tässä tutkimuksessa saatiin rakennettua käyttäjälähtöinen ja monipuolinen korkeakoululiikuntakonsepti, jonka toiminta on suunniteltua ja ohjattua. Työssä esitellään myös toimenpide-ehdotukset, joilla suunniteltu liikunta- ja hyvinvointipalveluja sisältävä konsepti voidaan ottaa käyttöön.
Resumo:
Three dimensional model design is a well-known and studied field, with numerous real-world applications. However, the manual construction of these models can often be time-consuming to the average user, despite the advantages o ffered through computational advances. This thesis presents an approach to the design of 3D structures using evolutionary computation and L-systems, which involves the automated production of such designs using a strict set of fitness functions. These functions focus on the geometric properties of the models produced, as well as their quantifiable aesthetic value - a topic which has not been widely investigated with respect to 3D models. New extensions to existing aesthetic measures are discussed and implemented in the presented system in order to produce designs which are visually pleasing. The system itself facilitates the construction of models requiring minimal user initialization and no user-based feedback throughout the evolutionary cycle. The genetic programming evolved models are shown to satisfy multiple criteria, conveying a relationship between their assigned aesthetic value and their perceived aesthetic value. Exploration into the applicability and e ffectiveness of a multi-objective approach to the problem is also presented, with a focus on both performance and visual results. Although subjective, these results o er insight into future applications and study in the fi eld of computational aesthetics and automated structure design.
Resumo:
L’émergence de nouvelles applications et de nouveaux services (tels que les applications multimédias, la voix-sur-IP, la télévision-sur-IP, la vidéo-sur-demande, etc.) et le besoin croissant de mobilité des utilisateurs entrainent une demande de bande passante de plus en plus croissante et une difficulté dans sa gestion dans les réseaux cellulaires sans fil (WCNs), causant une dégradation de la qualité de service. Ainsi, dans cette thèse, nous nous intéressons à la gestion des ressources, plus précisément à la bande passante, dans les WCNs. Dans une première partie de la thèse, nous nous concentrons sur la prédiction de la mobilité des utilisateurs des WCNs. Dans ce contexte, nous proposons un modèle de prédiction de la mobilité, relativement précis qui permet de prédire la destination finale ou intermédiaire et, par la suite, les chemins des utilisateurs mobiles vers leur destination prédite. Ce modèle se base sur : (a) les habitudes de l’utilisateur en terme de déplacements (filtrées selon le type de jour et le moment de la journée) ; (b) le déplacement courant de l’utilisateur ; (c) la connaissance de l’utilisateur ; (d) la direction vers une destination estimée ; et (e) la structure spatiale de la zone de déplacement. Les résultats de simulation montrent que ce modèle donne une précision largement meilleure aux approches existantes. Dans la deuxième partie de cette thèse, nous nous intéressons au contrôle d’admission et à la gestion de la bande passante dans les WCNs. En effet, nous proposons une approche de gestion de la bande passante comprenant : (1) une approche d’estimation du temps de transfert intercellulaire prenant en compte la densité de la zone de déplacement en terme d’utilisateurs, les caractéristiques de mobilité des utilisateurs et les feux tricolores ; (2) une approche d’estimation de la bande passante disponible à l’avance dans les cellules prenant en compte les exigences en bande passante et la durée de vie des sessions en cours ; et (3) une approche de réservation passive de bande passante dans les cellules qui seront visitées pour les sessions en cours et de contrôle d’admission des demandes de nouvelles sessions prenant en compte la mobilité des utilisateurs et le comportement des cellules. Les résultats de simulation indiquent que cette approche réduit largement les ruptures abruptes de sessions en cours, offre un taux de refus de nouvelles demandes de connexion acceptable et un taux élevé d’utilisation de la bande passante. Dans la troisième partie de la thèse, nous nous penchons sur la principale limite de la première et deuxième parties de la thèse, à savoir l’évolutivité (selon le nombre d’utilisateurs) et proposons une plateforme qui intègre des modèles de prédiction de mobilité avec des modèles de prédiction de la bande passante disponible. En effet, dans les deux parties précédentes de la thèse, les prédictions de la mobilité sont effectuées pour chaque utilisateur. Ainsi, pour rendre notre proposition de plateforme évolutive, nous proposons des modèles de prédiction de mobilité par groupe d’utilisateurs en nous basant sur : (a) les profils des utilisateurs (c’est-à-dire leur préférence en termes de caractéristiques de route) ; (b) l’état du trafic routier et le comportement des utilisateurs ; et (c) la structure spatiale de la zone de déplacement. Les résultats de simulation montrent que la plateforme proposée améliore la performance du réseau comparée aux plateformes existantes qui proposent des modèles de prédiction de la mobilité par groupe d’utilisateurs pour la réservation de bande passante.
Resumo:
Neste artigo, reflito sobre a minha experiência como psicóloga e docente-supervisora de estágio do curso de Psicologia de uma Universidade pública. Através de fragmentos de registros mnêmicos das produções registradas em relatórios, comunicações e artigos científicos, dissertação de mestrado, teses de doutorado e de livre docente, entre outros, procurei analisar a efetivação das políticas públicas e os desdobramentos na construção de um novo modelo de saúde mental, denominado de Atenção Psicossocial. Observei que atualmente as Políticas Públicas para Saúde Mental, construídas a partir do Movimento da Reforma Psiquiátrica, vêm propiciando mudanças significativas para o cuidado dos usuários. No entanto, o estado atual da assistência em saúde mental, no país, é marcado por muitos problemas e desafios. Entre eles se destaca a necessidade dos novos serviços oferecerem uma atenção integral ao usuário, norteada na interdisciplinariedade, interprofissionalidade e intersetorialidade.
Resumo:
How do developers and designers of a new technology make sense of intended users? The critical groundwork for user-centred technology development begins not by involving actual users' exposure to the technological artefact but much earlier, with designers' and developers' vision of future users. Thus, anticipating intended users is critical to technology uptake. We conceptualise the anticipation of intended users as a form of prospective sensemaking in technology development. Employing a narrative analytical approach and drawing on four key communities in the development of Grid computing, we reconstruct how each community anticipated the intended Grid user. Based on our findings, we conceptualise user anticipation in Terms of two key dimensions, namely the intended possibility to inscribe user needs into the technological artefact as well as the intended scope of the application domain. In turn, these dimensions allow us to develop an initial typology of intended user concepts that in turn might provide a key building block towards a generic typology of intended users.
Resumo:
Virtualized Infrastructures are a promising way for providing flexible and dynamic computing solutions for resourceconsuming tasks. Scientific Workflows are one of these kind of tasks, as they need a large amount of computational resources during certain periods of time. To provide the best infrastructure configuration for a workflow it is necessary to explore as many providers as possible taking into account different criteria like Quality of Service, pricing, response time, network latency, etc. Moreover, each one of these new resources must be tuned to provide the tools and dependencies required by each of the steps of the workflow. Working with different infrastructure providers, either public or private using their own concepts and terms, and with a set of heterogeneous applications requires a framework for integrating all the information about these elements. This work proposes semantic technologies for describing and integrating all the information about the different components of the overall system and a set of policies created by the user. Based on this information a scheduling process will be performed to generate an infrastructure configuration defining the set of virtual machines that must be run and the tools that must be deployed on them.
Resumo:
This paper describes our participation at PAN 2014 author profiling task. Our idea was to define, develop and evaluate a simple machine learning classifier able to guess the gender and the age of a given user based on his/her texts, which could become part of the solution portfolio of the company. We were interested in finding not the best possible classifier that achieves the highest accuracy, but to find the optimum balance between performance and throughput using the most simple strategy and less dependent of external systems. Results show that our software using Naive Bayes Multinomial with a term vector model representation of the text is ranked quite well among the rest of participants in terms of accuracy.
Resumo:
In this paper, a model (called the elliptic model) is proposed to estimate the number of social ties between two locations using population data in a similar manner to how transportation research deals with trips. To overcome the asymmetry of transportation models, the new model considers that the number of relationships between two locations is inversely proportional to the population in the ellipse whose foci are in these two locations. The elliptic model is evaluated by considering the anonymous communications patterns of 25 million users from three different countries, where a location has been assigned to each user based on their most used phone tower or billing zip code. With this information, spatial social networks are built at three levels of resolution: tower, city and region for each of the three countries. The elliptic model achieves a similar performance when predicting communication fluxes as transportation models do when predicting trips. This shows that human relationships are influenced at least as much by geography as is human mobility.
Resumo:
This article presents information on the September 2005 issue of the "Australian Journal of Communication." The papers by Dunn and Churchman in this issue of the journal were delivered at the very successful Annual Conference of the Australian and New Zealand Communication Association, hosted by Colleen Mills at the University of Canterbury, Christchurch, New Zealand, in July 2005. Dunn's presidential address, on the importance of maintaining public broadcasting, is based on her longterm work at the Australian Broadcasting Commission and her current research at the University of Sydney. Many of the other papers in this issue are related to politics and the media in Australia and New Zealand. Cover discusses how the processes of digitisation and a user-based taste for interactivity have far-reaching broadcast television. In her paper, van Vuuren compares the policy and regulation, practice, and theoretical development of the community broadcasting and community information and communication technology (lCT) sectors in Australia, arguing that the ICT sector can benefit from a knowledge of the way in which the older community broadcasting sector has demonstrated an ability to deliver its services with very limited government support.
Resumo:
The research presented in this paper is part of an ongoing investigation into how best to incorporate speech-based input within mobile data collection applications. In our previous work [1], we evaluated the ability of a single speech recognition engine to support accurate, mobile, speech-based data input. Here, we build on our previous research to compare the achievable speaker-independent accuracy rates of a variety of speech recognition engines; we also consider the relative effectiveness of different speech recognition engine and microphone pairings in terms of their ability to support accurate text entry under realistic mobile conditions of use. Our intent is to provide some initial empirical data derived from mobile, user-based evaluations to support technological decisions faced by developers of mobile applications that would benefit from, or require, speech-based data entry facilities.
Resumo:
The research presented in this paper is part of an ongoing investigation into how best to incorporate speech-based input within mobile data collection applications. In our previous work [1], we evaluated the ability of a single speech recognition engine to support accurate, mobile, speech-based data input. Here, we build on our previous research to compare the achievable speaker-independent accuracy rates of a variety of speech recognition engines; we also consider the relative effectiveness of different speech recognition engine and microphone pairings in terms of their ability to support accurate text entry under realistic mobile conditions of use. Our intent is to provide some initial empirical data derived from mobile, user-based evaluations to support technological decisions faced by developers of mobile applications that would benefit from, or require, speech-based data entry facilities.
Resumo:
Nowadays, the amount of customers using sites for shopping is greatly increasing, mainly due to the easiness and rapidity of this way of consumption. The sites, differently from physical stores, can make anything available to customers. In this context, Recommender Systems (RS) have become indispensable to help consumers to find products that may possibly pleasant or be useful to them. These systems often use techniques of Collaborating Filtering (CF), whose main underlying idea is that products are recommended to a given user based on purchase information and evaluations of past, by a group of users similar to the user who is requesting recommendation. One of the main challenges faced by such a technique is the need of the user to provide some information about her preferences on products in order to get further recommendations from the system. When there are items that do not have ratings or that possess quite few ratings available, the recommender system performs poorly. This problem is known as new item cold-start. In this paper, we propose to investigate in what extent information on visual attention can help to produce more accurate recommendation models. We present a new CF strategy, called IKB-MS, that uses visual attention to characterize images and alleviate the new item cold-start problem. In order to validate this strategy, we created a clothing image database and we use three algorithms well known for the extraction of visual attention these images. An extensive set of experiments shows that our approach is efficient and outperforms state-of-the-art CF RS.
Resumo:
We have designed this flowchart to help you choose the web filtering option that best suits your needs from three different options: Our free standard web filtering service, enhanced user based filtering or a solution from our framework agreement.
Resumo:
Nearest neighbour collaborative filtering (NNCF) algorithms are commonly used in multimedia recommender systems to suggest media items based on the ratings of users with similar preferences. However, the prediction accuracy of NNCF algorithms is affected by the reduced number of items – the subset of items co-rated by both users – typically used to determine the similarity between pairs of users. In this paper, we propose a different approach, which substantially enhances the accuracy of the neighbour selection process – a user-based CF (UbCF) with semantic neighbour discovery (SND). Our neighbour discovery methodology, which assesses pairs of users by taking into account all the items rated at least by one of the users instead of just the set of co-rated items, semantically enriches this enlarged set of items using linked data and, finally, applies the Collinearity and Proximity Similarity metric (CPS), which combines the cosine similarity with Chebyschev distance dissimilarity metric. We tested the proposed SND against the Pearson Correlation neighbour discovery algorithm off-line, using the HetRec data set, and the results show a clear improvement in terms of accuracy and execution time for the predicted recommendations.