924 resultados para Ultrasonic transducers.
Resumo:
Applications of ultrasound were starting from 1912 with the primary objective the detection of icebergs on prevention of maritime accidents. Algae, fish deaths and destruction were observed in the vicinity of sonar that equipped ships and submarines during the First World War.The evolutions of research and studies with ultrasound have big advances following the discovery of piezoelectric transducers in science and technology. As an example we can mention its application in microsurgery, fatigue detection in aerospace mechanics, catalysis sonochemical, biotechnology and others.The work presented here aims to demonstrate the application of ultrasonic in pulsed mode beams in biotechnology with the aim of improving the fermentation of a culture broth containing biological agents. In these experiments we used as ultrasound equipment and oscilator Sonics VCX-600 (20KHz), probe type wave guide. The experiments were conducted in a glass reactor of 200 mL of biomaterial containing cane juice and Saccharomyces cerevisiae in suspension. The parameters analyzed were related to the content Alcohlic (FID gas chromatography), and cell viability (Neubauer chamber), TRS (refractometry). Analysis of results showed that the total production exceeded in irradiated samples compared to normal fermentation (without ultrasound), suggesting additional advantage of ultrasound activation. Lastin Trials 1400 min, showed ethanol production systems 12% more than non-enabled systems. In this context alternatives for ethanol production, bio fuel and many other byproducts of the alcohol industries and chemicals could benefit from the use of ultrasound beams in this range of frequencies.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A fully integrated on-board electronic system that can perform in-situ structural health monitoring (SHM) of aircraft?s structures using specifically designed equipment for SHM based on guided wave ultrasonic method or Lamb waves? method is introduced. This equipment is called Phased Array Monitoring for Enhanced Life Assessment (PAMELA III) and is an essential part of overall PAMELA SHM? system. PAMELA III can generate any kind of excitation signals, acquire the response signals that propagate throughout the structure being tested, and perform the signal processing for damage detection directly on the structure without need to send the huge amount of raw signals but only the final SHM maps. It monitors the structure by means of an array of integrated Phased Array (PhA) transducers preferably bonded onto the host structure. The PAMELA III hardware for SHM mapping has been designed, built and subjected to laboratory tests, using aluminum and CFRP structures. The 12 channel system has been designed to be low weight (265 grams only), to have a small form factor, to be directly mounted above the integrated PhA transducers without need for cables and to be EMI protected so that the equipment can be taken on board an aircraft to perform required SHM analyses by use of embedded SHM algorithms. Moreover, the autonomous, automatic and on real-time working procedure makes it suitable for the avionic field, sending the corresponding alerts, maps and reports to external equipment.
Resumo:
In a general situation a non-uniform velocity field gives rise to a shift of the otherwise straight acoustic pulse trajectory between the transmitter and receiver transducers of a sonic anemometer. The aim of this paper is to determine the effects of trajectory shifts on the velocity as measured by the sonic anemometer. This determination has been accomplished by developing a mathematical model of the measuring process carried out by sonic anemometers; a model which includes the non-straight trajectory effect. The problem is solved by small perturbation techniques, based on the relevant small parameter of the problem, the Mach number of the reference flow, M. As part of the solution, a general analytical expression for the deviations of the computed measured speed from the nominal speed has been obtained. The correction terms of both the transit time and of the measured speed are of M 2 order in rotational velocity field. The method has been applied to three simple, paradigmatic flows: one-directional horizontal and vertical shear flows, and mixed with a uniform horizontal flow.
Resumo:
National Highway Traffic Safety Administration, Office of Research and Development, Washington, D.C.
Resumo:
This thesis discusses the need for nondestructive testing and highlights some of the limitations in present day techniques. Special interest has been given to ultrasonic examination techniques and the problems encountered when they are applied to thick welded plates. Some suggestions are given using signal processing methods. Chapter 2 treats the need for nondestructive testing as seen in the light of economy and safety. A short review of present day techniques in nondestructive testing is also given. The special problems using ultrasonic techniques for welded structures is discussed in Chapter 3 with some examples of elastic wave propagation in welded steel. The limitations in applying sophisticated signal processing techniques to ultrasonic NDT~ mainly found in the transducers generating or receiving the ultrasound. Chapter 4 deals with the different transducers used. One of the difficulties with ultrasonic testing is the interpretation of the signals encountered. Similar problems might be found with SONAR/RADAR techniques and Chapter 5 draws some analogies between SONAR/RADAR and ultrasonic nondestructive testing. This chapter also includes a discussion on some on the techniques used in signal processing in general. A special signal processing technique found useful is cross-correlation detection and this technique is treated in Chapter 6. Electronic digital compute.rs have made signal processing techniques easier to implement -Chapter 7 discusses the use of digital computers in ultrasonic NDT. Experimental equipment used to test cross-correlation detection of ultrasonic signals is described in Chapter 8. Chapter 9 summarises the conclusions drawn during this investigation.
Resumo:
The work described in this thesis is the development of an ultrasonic tomogram to provide outlines of cross-sections of the ulna in vivo. This instrument, used in conjunction with X-ray densitometry previously developed in this department, would provide actual bone mineral density to a high resolution. It was hoped that the accuracy of the plot obtained from the tomogram would exceed that of existing ultrasonic techniques by about five times. Repeat measurements with these instruments to follow bone mineral changes would involve very low X-ray doses. A theoretical study has been made of acoustic diffraction, using a geometrical transform applicable to the integration of three different Green's functions, for axisymmetric systems. This has involved the derivation of one of these in a form amenable to computation. It is considered that this function fits the boundary conditions occurring in medical ultrasonography more closely than those used previously. A three dimensional plot of the pressure field using this function has been made for a ring transducer, in addition to that for disc transducers using all three functions. It has been shown how the theory may be extended to investigate the nature and magnitude of the particle velocity, at any point in the field, for the three functions mentioned. From this study. a concept of diffraction fronts has been developed, which has made it possible to determine energy flow also in a diffracting system. Intensity has been displayed in a manner similar to that used for pressure. Plots have been made of diffraction fronts and energy flow direction lines.
Resumo:
The objective of this study was to extend the use of combined longitudinal (P-wave) and shear (S-wave) ultrasonic wave reflection (UWR) to monitor the setting and stiffening of self-compacting pastes and concretes. An additional objective was to interpret the UWR responses of various modified cement pastes. A polymeric buffer with acoustic impedance close to that of cement paste, high impact polystyrene, was chosen to obtain sensitive results from the early hydration period. Criteria for initial and final set developed by our group in a prior study were used to compute setting times by UWR. UWR results were compared with standard penetration measurements. Stiffening behavior and setting times for normal cement pastes, pastes modified with mineral and chemical admixtures, self-compacting pastes, and concretes were explored using penetration resistance, S-wave and P-wave reflection. All three methods showed that set times of pastes varied linearly with w/c, that superplasticizer and fly ash delayed the set times of pastes, and that differences in w/cm, sp/cm, and fa/cm could be detected. Final set times determined from UWR correlated well with those from penetration resistance. Initial set times from S-wave reflection did not correlate very well with those from penetration resistance. Final set times from P-wave and S-wave reflection were roughly the same. Pastes with different chemical admixtures were tested, and the effects of these admixtures on stiffening were determined using UWR. Self-compacting concretes were studied using UWR, and their response and setting times were largely similar to that of corresponding self-compacting pastes. The P-wave reflection response was explored in detail, and the phenomenon of partial debonding and the factors affecting it were explained. Partial debonding is probably caused by autogenous shrinkage at final set, and was controlled and limited by water. The extent of partial debonding was higher with the transducers placed on the side as opposed to the bottom, and the S-wave transducer seemed to promote debonding in the P-wave reflection, whereas the P-wave transducer seemed to reduce debonding in the S-wave reflection. Simultaneous formwork pressure testing and UWR were performed; however, no clear correlation was seen between the two properties.
Resumo:
The measurement of broadband ultrasonic attenuation (BUA) in cancellous bone at the calcaneus was first described in 1984. The assessment of osteoporosis by BUA has recently been recognized by Universities UK, within its EurekaUK book, as being one of the “100 discoveries and developments in UK Universities that have changed the world” over the past 50 years, covering the whole academic spectrum from the arts and humanities to science and technology. Indeed, BUA technique has been clinically validated and is utilized worldwide, with at least seven commercial systems providing calcaneal BUA measurement. However, a fundamental understanding of the dependence of BUA upon the material and structural properties of cancellous bone is still lacking. This review aims to provide a science- and technology-orientated perspective on the application of BUA to the medical disease of osteoporosis.