898 resultados para Types of roads.
Resumo:
It has become more and more demanding to investigate the impacts of wind farms on power system operation as ever-increasing penetration levels of wind power have the potential to bring about a series of dynamic stability problems for power systems. This paper undertakes such an investigation through investigating the small signal and transient stabilities of power systems that are separately integrated with three types of wind turbine generators (WTGs), namely the squirrel cage induction generator (SCIG), the doubly fed induction generator (DFIG), and the permanent magnet generator (PMG). To examine the effects of these WTGs on a power system with regard to its stability under different operating conditions, a selected synchronous generator (SG) of the well-known Western Electricity Coordinating Council (WECC three-unit nine-bus system and an eight-unit 24-bus system is replaced in turn by each type of WTG with the same capacity. The performances of the power system in response to the disturbances are then systematically compared. Specifically, the following comparisons are undertaken: (1) performances of the power system before and after the integration of the WTGs; and (2) performances of the power system and the associated consequences when the SCIG, DFIG, or PMG are separately connected to the system. These stability case studies utilize both eigenvalue analysis and dynamic time-domain simulation methods.
Resumo:
Providing mobility corridors for communities, enabling freight networks to transport goods and services, and a pathway for emergency services and disaster relief operations, roads are a vital component of our societal system. In the coming decades, a number of modern issues will face road agencies as a result of climate change, resource scarcity and energy related challenges that will have implications for society. To date, these issues have been discussed on a case by case basis, leading to a fragmented approach by state and federal agencies in considering the future of roads – with potentially significant cost and risk implications. Within this context, this paper summarises part of a research project undertaken within the ‘Greening the Built Environment’ program of the Sustainable Built Environment National Research Centre (SBEnrc, Australia), which identified key factors or ‘trends’ affecting the future of roads and key strategies to ensure that road agencies can continue to deliver road infrastructure that meets societal needs in an environmentally appropriate manner. The research was conducted over two years, including a review of academic and state agency literature, four stakeholder workshops in Western Australia and Queensland, and industry consultation. The project was supported financially and through peer review and contribution, by Main Roads Western Australia, QLD Department of Transport and Main Roads, Parsons Brinckerhoff, John Holland Group, and the Australian Green Infrastructure Council (AGIC). The project highlighted several potential trends that are expected to affect road agencies in the future, including predicted resource and materials shortages, increases in energy and natural resources prices, increased costs related to greenhouse gas emissions, changing use and expectations of roads, and changes in the frequency and intensity of weather events. Exploring the implications of these potential futures, the study then developed a number of strategies in order to prepare transport agencies for the associated risks that such trends may present. An unintended outcome of the project was the development of a process for enquiring into future scenarios, which will be explored further in Stage 2 of the project (2013-2014). The study concluded that regardless of the type and scale of response by the agency, strategies must be holistic in approach, and remain dynamic and flexible.
Resumo:
This study applied the affect heuristic model to investigate key psychological factors (affective associations, perceived benefits, and costs of wood heating) contributing to public support for three distinct types of wood smoke mitigation policies: education, incentives, and regulation. The sample comprised 265 residents of Armidale, an Australian regional community adversely affected by winter wood smoke pollution. Our results indicate that residents with stronger positive affective associations with wood heating expressed less support for wood smoke mitigation policies involving regulation. This relationship was fully mediated by expected benefits and costs associated with wood heating. Affective associations were unrelated to public support for policies involving education and incentives, which were broadly endorsed by all segments of the community, and were more strongly associated with rational considerations. Latent profile analysis revealed no evidence to support the proposition that some community members experience internal “heart versus head” conflicts in which their positive affective associations with wood heating would be at odds with their risk judgments about the dangers of wood smoke pollution. Affective associations and cost/benefit judgments were very consistent with each other.
Resumo:
The echolocation calls of long-tailed bats (Chalinolobus tuberculatus) were recorded in the Eglinton Valley, Fjordland, New Zealand, and digitized for analysis with the signal-processing software. Univariate and multivariate analyses of measure features facilitated a quantitative classification of the calls. Cluster analysis was used to categorize calls into two groups equating to search and terminal buzz calls described qualitatively for other species. When moving from search to terminal phases, the calls decrease in bandwidth, maximum and minimum frequency of call, and duration. Search calls begin with a steep-downward FM sweep followed by a short, less-modulated component. Buzz calls are FM sweeps. Although not found quantitatively, a broad pre-buzz group of calls also was identified. Ambiguity analysis of calls from the three groups shows that search-phrase calls are well suited to resolving the velocity of targets, and hence, identifying moving targets in a stationary clutter. Pre-buzz and buzz calls are better suited to resolving range, a feature that may aid the bats in capture of evasive prey after it has been identified.
Resumo:
Effective fuel injector operation and efficient combustion are two of the most critical aspects when Diesel engine performance, efficiency and reliability are considered. Indeed, it is widely acknowledged that fuel injection equipment faults lead to increased fuel consumption, reduced power, greater levels of exhaust emissions and even unexpected engine failure. Previous investigations have identified fuel injector related acoustic emission activity as being caused by mechanisms such as fuel line pressure build-up; fuel flow through injector nozzles, injector needle opening and closing impacts and premixed combustion related pulses. Few of these investigations however, have attempted to categorise the close association and interrelation that exists between fuel injection equipment function and the acoustic emission generating mechanisms. Consequently, a significant amount of ambiguity remains in the interpretation and categorisation of injector related AE activity with respect to the functional characteristics of specific fuel injection equipment. The investigation presented addresses this ambiguity by detailing a study in which AE signals were recorded and analysed from two different Diesel engines employing the two commonly encountered yet fundamentally different types of fuel injection equipment. Results from tests in which faults were induced into fuel injector nozzles from both indirect-injection and direct-injection engines show that functional differences between the main types of fuel injection equipment results in acoustic emission activity which can be specifically related to the type of fuel injection equipment used.
Resumo:
In the current regulatory climate, there is increasing expectation that law schools will be able to demonstrate students’ acquisition of learning outcomes regarding collaboration skills. We argue that this is best achieved through a stepped and structured whole-of-curriculum approach to small group learning. ‘Group work’ provides deep learning and opportunities to develop professional skills, but these benefits are not always realised for law students. An issue is that what is meant by ‘group work’ is not always clear, resulting in a learning regime that may not support the attainment of desired outcomes. This paper describes different types of ‘group work', each associated with distinct learning outcomes. It suggests that ‘group work’ as an umbrella term to describe these types is confusing, as it provides little indication to students and teachers of the type of learning that is valued and is expected to take place. ‘Small group learning’ is a preferable general descriptor. Identifying different types of small group learning allows law schools to develop and demonstrate a scaffolded, sequential and incremental approach to fostering law students’ collaboration skills. To support learning and the acquisition of higherorder skills, different types of small group learning are more appropriate at certain stages of the program. This structured approach is consistent with social cognitive theory, which suggests that with the guidance of a supportive teacher, students can develop skills and confidence in one type of activity which then enhances motivation to participate in another.
Resumo:
Background: Individuals who fear falling may restrict themselves from performing certain activities and may increase their risk of falling. Such fear, reflected in the form of falls efficacy, has been measured in only a small number of studies measuring the effectiveness of exercise interventions in the elderly. This may be due to the various types of exercise that can be performed. Hence the effectiveness of exercise on falls efficacy is relatively understudied. Therefore, there is a need to measure falls efficacy as an outcome variable when conducting exercise interventions in the elderly. Methods: A total of 43 elderly community-dwelling volunteers were recruited and randomly allocated to a conventional exercise intervention, a holistic exercise intervention, or a control group. The interventions were performed 2 days per week for 10 weeks. Falls efficacy was measured at baseline and at the completion of the interventions using the Modified Falls Efficacy Scale (MFES). Results: Within group comparisons between baseline and follow-up indicated no significant improvements in falls efficacy, however, the difference for the conventional exercise group approached statistical significance (baseline 8.9 to follow-up 9.3; P = 0.058). Within group comparisons of mean difference MFES scores showed a significant difference between the conventional exercise group and the control group (conventional exercise group 0.4 vs control group −0.6; P < 0.05). Conclusion: Given the lack of significant improvements in falls efficacy found for any of the groups, it cannot be concluded whether a conventional or a holistic exercise intervention is the best approach for improving falls efficacy. It is possible that the characteristics of the exercise interventions including specificity, intensity, frequency and duration need to be manipulated if the purpose is to bring about improvements in falls efficacy.
Resumo:
According to the Australian Government, when combined with expected population growth and internal migration, expected changes in temperature and rainfall are expected to increase road maintenance costs by over 30 percent by 2100. This presents a significant future economic risk, in response, this paper will discuss the potential for roads to improve their resilience to the impacts of climate change and other key pressures. The paper will also highlight how such measures can inform state and national main road infrastructure planning and reduce future associated risks and costs.
Resumo:
Although road construction and use provides significant economic and social benefits, its environmental impact is of growing concern. Roads are one of the greatest greenhouse gas contributors, both directly through fossil energy consumed in mining, transporting, earthworks and paving work, and through the emissions from road use by vehicles. Further,according to the Australian Government, when combined with expected population growth and internal migration,expected changes in temperature and rainfall are expected to increase road maintenance costs. This discussion paper will outline opportunities within the Australian context for reducing environmental and carbon pressure from road building, and provide a framework for considering the potential pressures that will affect the resilience of roads to the impacts of climate change and oil vulnerability.
Resumo:
Although road construction and use provides significant economic and social benefits, its environmental impact is of growing concern. Roads are one of the greatest greenhouse gas contributors, both directly through fossil energy consumed in mining, transporting, earthworks and paving work, plus the emissions from road use by vehicles. Further, according to the Australian Government, when combined with forecast population growth, internal migration and changes in temperature and rainfall, these are expected to increase road maintenance costs. This discussion paper outlines opportunities within the Australian context for reducing environmental and carbon pressure from road building, and provides a framework for considering the potential future pressures that will affect the resilience of roads to the impacts of climate change and oil vulnerability. Seven strategic areas are outlined for further investigation, including a guide to carbon management for road agencies covering planning, funding, procurement, delivery and maintenance of roads.
Resumo:
Roads and road infrastructure will be faced with multiple challenges over the coming decades – challenges that in many ways bear little resemblance to those previously faced - and as such will require new approaches. The opportunity exists to transform the way road infrastructure is conceived and constructed, as a key part of the process of assisting society to respond to climate change and reduce other environmental pressures. Innovations in road construction, use and management in order to manage these changes can now be seen. Scenario planning is one tool that can take into account emerging challenges, develop or adopt new approaches, and thus help this transformation to occur. The paper explores scenario planning methodologies, global innovations and trends in road construction and maintenance and the findings from stakeholder workshops in Brisbane and Perth. It highlights key opportunities for road agencies to use scenarios to enable planning that, in the face of future uncertainties, facilitates appropriate responses.
Resumo:
In the coming decades the design, construction and maintenance of roads will face a range of new challenges - that in many ways will bear little resemblance to the challenges previously faced - and as such will require a number of new approaches. Such challenges will result from a growing number of interconnected environmental, social and economic factors, which are set to apply significant pressure on the future of roads. For instance, environmental pressures will include the impacts of climate change on rainfall patterns and temperature profiles; economic pressure will be affected by shifting global economic balances and flows, and will include materials and resources shortages, along with predicted increases in energy and resource prices globally,i and social pressures will include potential shifts to lighter vehicles, reduced use of cars due to higher fuel costs, and political pressure to respond to climate change.
Resumo:
Road agencies face growing pressure to respond to a range of issues associated with climate change and the reliance on fossil fuels. A key part of this response will be to reduce the dependency on fossil fuel based energy (and the associated greenhouse gas emissions) of transport, both vehicles and infrastructure. This paper presents findings of investigations into three key areas of innovative technologies and processes, namely the inclusion of onsite renewable energy generation technologies as part of road and transport infrastructure, the potential for automated motorways to reduce traffic fuel consumption (referred to as 'Smart Roads'), and the reduction of energy demand from route and signal lighting. The paper then concludes with the recommendation for the engineering profession to embrace sustainability performance assessment and rating tools as the basis for enhancing and communicating the contribution to Australia's response to climate change. Such tools provide a rigorous structure that can standardise approaches to key issues across entire sectors and provide clarity on the evidence required to demonstrate leading performance. The paper has been developed with funding and support provided by Australia's Sustainable Built Environment National Research Centre (SBEnrc), working with partners including Main Roads Western Australia, NSW Roads and Maritime Services, Queensland Department of Transport and Main Roads, John Holland Group, the Infrastructure Sustainability Council of Australia, Roads Australia, and the CRC for Low Carbon Living.
Resumo:
He II UPS and XPS study of oxygen adsorption on Ni and barium-dosed Ni and Cu surfaces at 300 K show two types of oxygen species which are assigned to O2- and O1- (ad).
Resumo:
A comprehensive set of new configurations for the holographic simulation of a wide variety of mirrors is described. These holographically simulated mirrors (HSMs) have been experimentally realized and their imaging performance has been studied.