106 resultados para Treillis de Galois


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce a new class of noncommutative rings - Galois orders, realized as certain subrings of invariants in skew semigroup rings, and develop their structure theory. The class of Calms orders generalizes classical orders in noncommutative rings and contains many important examples, such as the Generalized Weyl algebras, the universal enveloping algebra of the general linear Lie algebra, associated Yangians and finite W-algebras (C) 2010 Elsevier Inc All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In questa tesi viene studiata la corrispondenza di Galois. Tale corrispondenza mette in relazione particolari sottogruppi con sottocampi intermedi di un'estensione finita.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nella tesi viene studiata tramite un certo numero di esempi la corrispondenza di Galois per polinomi di terzo e quarto grado.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Questa tesi tratta di argomenti di Teoria di Galois. In essa sono presenti alcuni richiami fondamentali della teoria di Galois, come il gruppo di Galois di una estensione di campi di Galois e la corrispondenza di Galois. Prosegue con lo studio delle radici m-esime primitive dell'unità e dei polinomi ciclotomici. Infine si studia il gruppo di Galois di un polinomio ciclotomico.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last 15 years, many class number formulas and main conjectures have been proven. Here, we discuss such formulas on the Selmer groups of the three-dimensional adjoint representation ad(φ) of a two-dimensional modular Galois representation φ. We start with the p-adic Galois representation φ0 of a modular elliptic curve E and present a formula expressing in terms of L(1, ad(φ0)) the intersection number of the elliptic curve E and the complementary abelian variety inside the Jacobian of the modular curve. Then we explain how one can deduce a formula for the order of the Selmer group Sel(ad(φ0)) from the proof of Wiles of the Shimura–Taniyama conjecture. After that, we generalize the formula in an Iwasawa theoretic setting of one and two variables. Here the first variable, T, is the weight variable of the universal p-ordinary Hecke algebra, and the second variable is the cyclotomic variable S. In the one-variable case, we let φ denote the p-ordinary Galois representation with values in GL2(Zp[[T]]) lifting φ0, and the characteristic power series of the Selmer group Sel(ad(φ)) is given by a p-adic L-function interpolating L(1, ad(φk)) for weight k + 2 specialization φk of φ. In the two-variable case, we state a main conjecture on the characteristic power series in Zp[[T, S]] of Sel(ad(φ) ⊗ ν−1), where ν is the universal cyclotomic character with values in Zp[[S]]. Finally, we describe our recent results toward the proof of the conjecture and a possible strategy of proving the main conjecture using p-adic Siegel modular forms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let V be a p-adic representation of Gal(Q̄/Q). One of the ideas of Wiles’s proof of FLT is that, if V is the representation associated to a suitable autromorphic form (a modular form in his case) and if V′ is another p-adic representation of Gal(Q̄/Q) “closed enough” to V, then V′ is also associated to an automorphic form. In this paper we discuss which kind of local condition at p one should require on V and V′ in order to be able to extend this part of Wiles’s methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss proofs of some new special cases of Serre’s conjecture on odd, degree 2 representations of Gℚ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To provide more efficient and flexible alternatives for the applications of secret sharing schemes, this paper describes a threshold sharing scheme based on exponentiation of matrices in Galois fields. A significant characteristic of the proposed scheme is that each participant has to keep only one master secret share which can be used to reconstruct different group secrets according to the number of threshold values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Available on demand as hard copy or computer file from Cornell University Library.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis (doctoral)--Kaiser-Wilhelms-Universitaet-Strassburg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis (doctoral)--

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis (doctoral)--

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A variation of low-density parity check (LDPC) error-correcting codes defined over Galois fields (GF(q)) is investigated using statistical physics. A code of this type is characterised by a sparse random parity check matrix composed of C non-zero elements per column. We examine the dependence of the code performance on the value of q, for finite and infinite C values, both in terms of the thermodynamical transition point and the practical decoding phase characterised by the existence of a unique (ferromagnetic) solution. We find different q-dependence in the cases of C = 2 and C ≥ 3; the analytical solutions are in agreement with simulation results, providing a quantitative measure to the improvement in performance obtained using non-binary alphabets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using methods of statistical physics, we study the average number and kernel size of general sparse random matrices over GF(q), with a given connectivity profile, in the thermodynamical limit of large matrices. We introduce a mapping of GF(q) matrices onto spin systems using the representation of the cyclic group of order q as the q-th complex roots of unity. This representation facilitates the derivation of the average kernel size of random matrices using the replica approach, under the replica symmetric ansatz, resulting in saddle point equations for general connectivity distributions. Numerical solutions are then obtained for particular cases by population dynamics. Similar techniques also allow us to obtain an expression for the exact and average number of random matrices for any general connectivity profile. We present numerical results for particular distributions.