845 resultados para Transmission Electron-Microscopy
Resumo:
Stress in local isolation structures is studied by micro‐Raman spectroscopy. The results are correlated with predictions of an analytical model for the stress distribution and with cross‐sectional transmission electron microscopy observations. The measurements are performed on structures on which the Si3N4 oxidation mask is still present. The influence of the pitch of the periodic local isolation pattern, consisting of parallel lines, the thickness of the mask, and the length of the bird"s beak on the stress distribution are studied. It is found that compressive stress is present in the Si substrate under the center of the oxidation mask lines, with a magnitude dependent on the width of the lines. Large tensile stress is concentrated under the bird"s beak and is found to increase with decreasing length of the bird"s beak and with increasing thickness of the Si3N4 film.
Resumo:
In this study, we present a detailed structural characterization by means of transmission electron microscopy and Raman spectroscopy of polymorphous silicon (pm-Si:H) thin films deposited using radio-frequency dust-forming plasmas of SiH4 diluted in Ar. Square-wave modulation of the plasma and gas temperature was varied to obtain films with different nanostructures. Transmission electron microscopy and electron diffraction have shown the presence of Si crystallites of around 2 nm in the pm-Si:H films, which are related to the nanoparticles formed in the plasma gas phase coming from their different growth stages, named particle nucleation and coagulation. Raman scattering has proved the role of the film nanostructure in the crystallization process induced ¿in situ¿ by laser heating.
Resumo:
Transmission electron microscopy is a proven technique in the field of cell biology and a very useful tool in biomedical research. Innovation and improvements in equipment together with the introduction of new technology have allowed us to improve our knowledge of biological tissues, to visualizestructures better and both to identify and to locate molecules. Of all the types ofmicroscopy exploited to date, electron microscopy is the one with the mostadvantageous resolution limit and therefore it is a very efficient technique fordeciphering the cell architecture and relating it to function. This chapter aims toprovide an overview of the most important techniques that we can apply to abiological sample, tissue or cells, to observe it with an electron microscope, fromthe most conventional to the latest generation. Processes and concepts aredefined, and the advantages and disadvantages of each technique are assessedalong with the image and information that we can obtain by using each one ofthem.
Resumo:
Spectroscopic ellipsometry and high resolution transmission electron microscopy have been used to characterize microcrystalline silicon films. We obtain an excellent agreement between the multilayer model used in the analysis of the optical data and the microscopy measurements. Moreover, thanks to the high resolution achieved in the microscopy measurements and to the improved optical models, two new features of the layer-by-layer deposition of microcrystalline silicon have been detected: i) the microcrystalline films present large crystals extending from the a-Si:H substrate to the film surface, despite the sequential process in the layer-by-layer deposition; and ii) a porous layer exists between the amorphous silicon substrate and the microcrystalline silicon film.
Resumo:
Aims: The aim of this work was to assess the ultrastructural changes, cellular proliferation, and the biofilm formation ability of F. nucleatum as defense mechanisms against the effect of HNP-1. Materials and methods: The type strain of F. nucleatum (ssp. nucleatum ATCC 25586) and two clinical strains (ssp. polymorphum AHN 9910 and ssp. nucleatum AHN 9508) were cultured and incubated with four different test concentrations of recombinant HNP-1 (1, 5, 10 and 20 µg/ml) and one control group (0 µg/ml). Bacterial pellets from each concentration were processed for TEM imaging. Planktonic growth was assessed and colony forming units (CFU) were measured to determine the cellular proliferation. Scrambled HNP-1 was used for confirmation. Results: TEM analyses revealed a decrease in the outer membrane surface corrugations and roughness of the strain AHN 9508 with increasing HNP-1 concentrations. In higher concentrations of HNP-1, the strain AHN 9910 showed thicker outer membranes with a number of associated rough vesicles attached to the outer surface. For ATCC 25586, the treated bacterial cells contained higher numbers of intracellular granules with increasing the peptide concentration. Planktonic growth of the two clinical strains were significantly enhanced (P<0.001) with gradually increased concentrations of HNP-1. None of the planktonic growth results of the 3 strains incubated with the scrambled HNP-1 was statistically significant. HNP-1 decreased the biofilm formation of the two clinical strains, AHN 9910 and 9508, significantly (P<0.01 and P<0.001; respectively). Conclusions: The present in vitro study demonstrates that F. nucleatum has the ability to withstand the lethal effects of HNP-1 even at concentrations simulating the diseased periodontium in vivo. The increase in planktonic growth could act as defense mechanisms of F. nucleatum against HNP-1.
Resumo:
A method has been established for observing the internal structure of the network component of polymer-stabilised liquid crystals. In situ photopolymerisation of a mesogenic diacrylate monomer using ultraviolet light leads to a sparse network (∼1 wt%) within a nematic host. Following polymerisation, the host was removed through dissolution in heptane, revealing the network. In order to observe a cross-section through the network, it was embedded in a resin and then sectioned using an ultramicrotome. However, imaging of the network was not possible due to poor contrast. To improve this, several reagents were used for network staining, but only one was successful: bromine. The use of a Melinex-resin composite for sectioning was also found to be advantageous. Imaging of the network using transmission electron microscopy revealed solid “droplets” of width 0.07–0.20 μm, possessing an open, yet homogeneous structure, with no evidence for any large-scale internal structures.
Resumo:
The objective of this study was to characterize acrosomal ultrastructure following discontinuous Percoll gradient centrifugation of cryopreserved bovine sperm. Semen was collected from six bulls of different breeds and three ejaculates per bull were evaluated. Frozen semen samples were thawed and the acrosomal region of sperm cells was evaluated by transmission electron microscopy (TEM) before (n = 18) and after (n = 18) Percoll centrifugation. The evaluation of 20 sperm heads from each of the 36 samples analyzed ensured that a large number of cells were investigated. The data were subjected to analysis of variance at a level of significance of 5%. Percoll centrifugation reduced the percentage of sperm exhibiting normal acrosomes (from 61.77 to 30.24%), reduced the percentage of sperm presenting atypical acrosome reactions (from 28.38 to 4.84%) and increased the percentage of sperm exhibiting damage in the acrosome (from 6.14 to 64.26%). The percentage of sperm with typical acrosome reactions was not significantly different before (3.70%) and after (0.67%) centrifugation. TEM distinguished four different types of acrosomal status and enabled ultrastructural characterization of acrosomal injuries. The percentage of sperm exhibiting normal acrosomes decreased and damage in the acrosome was the most frequent acrosomal injury with the Percoll gradient centrifugation protocol utilized.
Resumo:
The current study evaluates the ability of equine oocytes matured in different conditions to undergo nuclear and cytoplasmic maturation.. After oocyte transfer, embryonic development was diagnosed at 1.5 and 90 days of gestation. For each group, immature oocytes obtained from slaughterhouse ovaries were matured in vitro (5 replicates). In experiment I, three different media were tested. HTF:BME, SOFaa, and TCM 199. In experiment 11, the HTF:BME was chosen as maturation medium containing pFSH, eFSH, or eFSH + eGH. Nuclear maturation was estimated after stripping the oocytes and staining with Hoechst 33342. The evaluation of cytoplasmic maturation was performed by transmission electron microscopy. For oocyte transfer, six non-cycling recipient mares were used, and 8 to 15 oocytes were transferred in each mare. In experiment I, the results showed no differences (P > .05) in nuclear maturation (MII) among experimental groups. The percentage of MII was 29.3 ( +/- 9.6), 23.4 ( +/- 8.4), and 13.5 ( +/- 12.4) for HTF:BME, SOF, and TCM, respectively. In experiment II, all media tested were efficient in inducing metaphase II. Also, no statistical differences (P > .05) were observed in percentages of nuclear maturation rates when porcine (37.1 +/- 22.4) or equine (25.8 +/- 8.2) FSH were used, or when eFSH + eGH was added to HTF:BME (29.4 +/- 12.3). The analysis of cytoplasmic morphology of oocytes cultured in TCM 199 and SOFaa showed signs of incomplete cytoplasmic maturation and premature cortical reaction. Meanwhile, oocytes cultured in HTF:BME medium presented cytoplasmic characteristics similar to those described by others for in vivo-matured oocytes. The addition of eFSH to the HTF:BME medium resulted in an improvement of cytoplasmic morphology. After oocyte transfer, two mares became pregnant, one from pFSH group and one from eFSH+eGH group. These results indicate that although in vitro matured equine oocytes are capable of fertilization and embryonic development, the percentage of competent oocytes is still low.
Resumo:
Previous studies on legume pulvini suggest that the vascular system plays an important role in the redistribution of ions and transmission of stimuli during leaf's movements. However, the number of anatomical and ultrastructural studies is limited to few species. The aim of this paper is to investigate the structure and cellular features of the pulvinus vascular system of nine legume species from Brazilian cerrado, looking for structural traits pointing to its participation in the leaf's movements. Samples were excised from the medial region of opened pulvinus of Bauhinia rufa, Copaifera langsdorffii, Senna rugosa (Caesalpinioideae), Andira humilis, Dalbergia miscolobium, Zornia dilphylla (Faboideae), Mimosa rixosa, Mimosa flexuosa and Stryphnodendron polyphyllum (Mimosoideae), and were prepared following light microscopy, transmission electron microscopy and histochemical standard techniques. The vascular system occupies a central position, comprises phloem and xylem and is delimited by a living sheath of septate fibers in all the species studied. This living cells sheath connects the cortex to the vascular tissues via numerous plasmodesmata. The absence of fibers and sclereids, the presence of phenolic idioblasts and the abundance and diversity of protein inclusions in the sieve tube members are remarkable features of the phloem. Pitted vessel elements, parenchyma cells with abundant cytoplasm and living fibriform elements characterize the xylem. The lack of lignified tissues and extensive symplastic continuity by plasmodesmata are remarkable features of the vascular system of pulvini of the all studied species. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The use of essential oils (EOs) in functional foods containing probiotic microorganisms must consider the antimicrobial activity of these oils against beneficial bacteria such as Lactobacillus rhamnosus. This study aimed to evaluate the sensitivity of L. rhamnosus cultures treated with cinnamon EO through viable cell counts and visualisation by transmission electron microscopy. Cinnamon EO at a concentration of 0.04% had a bacteriostatic activity after 2 h of incubation. Although slight alterations were detected in the cell structure, this concentration was considered to be bactericidal, since it led to a significant reduction in cell numbers after 24 h. on the other hand, cinnamon EO at a 1.00% concentration decreased cell counts by 3 log units after 2 h incubation and no viable cell count was detected after 24 h. Transmission electron microscopy indicated that cells treated with 1.00% cinnamon EO were severely damaged and presented cell membrane disruption and cytoplasmic leakage.
Resumo:
The genus Actinocephalus comprises 25 species and is restricted to Brazil, occurring mainly in the Espinhaco Mountains of Minas Gerais and Bahia States. Previous anatomical studies have reported the occurrence of intracellular papillae in the Actinocephalus roots, without dealing with their ultrastructure and function. The purpose of this paper is to investigate the structure, the composition and the probable function of the intracellular papillae of Actinocephalus roots, based on light microscopy, transmission electron microscopy and histochemical tests. The intracellular papillae occurred in all root tissues, from the rhizodermis to the vascular cylinder; they presented different forms and sizes and, ultrastructurally, they corresponded to material deposited between the cell wall and the plasma membrane. The histochemical tests carried out were positive for cellulose, pectin and callose. The intracellular papillae are responses of the plant cells to the interaction with fungi. They work as a physical barrier restricting fungal penetration, and they may also favor the supply of water and nutrients to the plant, since they increase root absorption surface. This might explain why the species of Actinocephalus are among the tallest Eriocaulaceae despite their reduced radicular system and the nutritional deficiency of the soil in which they grow. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Combined dynamic and static light scattering (DLS, SLS) and cryogenic transmission electron microscopy (cryo-TEM) were used to investigate extruded cationic vesicles of dioctadecyldimethylammonium chloride and bromide (DODAX, X being Cl- or Br-). In salt-free dispersions the mean hydrodynamic diameter, D-h, and the weight average molecular weight, M-w, are larger for DODAB than for DODAC vesicles, and both D-h and M-w increase with the diameter (phi) of the extrusion filter. NaCl (NaBr) decreases (increases) the DODAB (DODAC) vesicle size, reflecting the general trend of DODAB to assemble as larger vesicles than DODAC. The polydispersity index is lower than 0.25, indicating the dispersions are rather polydisperse. Cryo-TEM micrographs show that the smaller vesicles are spherical while the larger ones are oblong or faceted, and the vesicle samples are fairly polydisperse in size and morphology. They also indicate that the vesicle size increases with phi and DODAB assembles as larger vesicles than DODAC. Lens-shaped vesicles were observed in the extruded preparations. Both light scattering and cryo-TEM indicate that the vesicle size is larger or smaller than phi when phi is smaller or larger than the optimal phi* approximate to 200 nm. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Estudou-se sequencialmente, à microscopia eletrônica de transmissão, a interação entre Paracoccidioides brasiliensis (Pb) e células inflamatórias em hamsters inoculados por via intratesticular. Seis horas após inoculações havia predominância de neutrófilos, estando presentes algumas células mononucleares e eosinófilos. Os neutrófilos foram progressivamente substituídos por células mononucleares. Fungos viáveis apresentavam-se fagocitados ou circunscritos por células inflamatórias, geralmente com ampla interface hospedeiro-parasita. Fungos mortos ou degenerados eram acompanhados de interfase estreita. A camada externa da parede do Pb era às vezes quebrada quando em contacto com neutrófilos, em vários pontos, sendo os fragmentos dessa parede descamados e fagocitados. Células fúngicas pequenas com um único núcleo se relacionavam com ampla interfase enquanto as células maiores e multinucleadas apresentavam paredes irregulares, por vezes, contendo lomasoma e/ou estrutura semelhante à mielina. Diferentes padrões de interação do Pb com células do hospedeiro podem ser decorrentes do a fluxo de células inflamatórias funcionalmente diferentes ao local de inoculação ou à idade dos fungos ou ambos os fatores.
Resumo:
Silicon crystal exhibits a ductile regime during machining prior to the onset of fracture when appropriate cutting conditions are applied. The present study shows that the ductile regime is a result of a phase transformation which is indirectly evidenced by the amorphous phase detected in the machined surface. Transmission electron microscopy (TEM) planar view studies were successfully performed on monocrystalline silicon (1 0 0) single point diamond turned. TEM electron diffraction patterns show that the machined surface presents diffuse rings along with traces of crystalline material. This is attributed to crystalline silicon immersed in an amorphous matrix. Furthermore, only diffuse rings in the diffraction patterns of the ductile chip are detected, indicating that it is totally amorphous. © 2000 Elsevier Science B.V. All rights reserved.