987 resultados para Transitions de phase
Resumo:
As a function of temperature, the layered compound K2Na[Ag(CN)213 displays dramatic variations in luminescence thermochromism with major trend changes occurring around 80 K. In order to understand these interesting optical properties, high-resolution neutron diffraction investigations were performed on a polycrystalline sample of this material in the temperature range from 1.5 to 300 K, and previous synchrotron X-ray data of Larochelle et al. (Solid State Commun. 114, 155 (2000)) were reinterpreted. The corresponding significant structural changes were found to be continuous with an anomalous increase of the monoclinic c-lattice parameter with decreasing temperature, associated with slight reorientations of two inequivalent, approximately linear N-C-Ag-C-N units. In the whole temperature range, the crystal structure is monoclinic with the space group C2/m. Based on the structural results, the major luminescence thermochromism changes around 80 K are attributed to the dominance of a back energy transfer process from low- to high-energy excitons at high temperatures. (E) 2002 Elsevier Science (USA).
Resumo:
The ferroelectric phase transitions in 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 (BCZT 50/50) ceramics,fabricatedbyasolidstatereaction,werestudiedbyusing X-Ray diffraction, Raman spectroscopy, and measuring electric polarization, dielectric permittivity and pyroelectric current. Xraydiffraction(XRD)confirmsthecoexistenceoftetragonal(T) andrhombohedral(R)phasesatroomtemperature.Thetemperature dependence of the Raman modes frequency reveals the existenceoftwophasetransitionscorrespondingtotherhombohedral – tetragonal, and tetragonal - cubic close to 30 and 100 °C, respectively. The temperature dependence of electric polarization,pyroelectriccurrent,anddielectricpermittivityfurther supports theferroelectric (tetragonal) toparaelectric (cubic) phasetransition.Moreover,thedielectricpermittivityrevealsthe diffuseness of the phase transition and is attributed to the compositional fluctuations of different polar micro-regions.
Resumo:
Magdeburg, Univ., Fak. für Naturwiss., Diss., 2009
Resumo:
We consider systems that can be described in terms of two kinds of degree of freedom. The corresponding ordering modes may, under certain conditions, be coupled to each other. We may thus assume that the primary ordering mode gives rise to a diffusionless first-order phase transition. The change of its thermodynamic properties as a function of the secondary-ordering-mode state is then analyzed. Two specific examples are discussed. First, we study a three-state Potts model in a binary system. Using mean-field techniques, we obtain the phase diagram and different properties of the system as a function of the distribution of atoms on the different lattice sites. In the second case, the properties of a displacive structural phase transition of martensitic type in a binary alloy are studied as a function of atomic order. Because of the directional character of the martensitic-transition mechanism, we find only a very weak dependence of the entropy on atomic order. Experimental results are found to be in quite good agreement with theoretical predictions.
Resumo:
We present an experimental study of the premartensitic and martensitic phase transitions in a Ni2MnGa single crystal by using ultrasonic techniques. The effect of applied magnetic field and uniaxial compressive stress has been investigated. It has been found that they substantially modify the elastic and magnetic behavior of the alloy. These experimental findings are a consequence of magnetoelastic effects. The measured magnetic and vibrational behavior agrees with the predictions of a recently proposed Landau-type model [A. Planes et al., Phys. Rev. Lett. 79, 3926 (1997)] that incorporates a magnetoelastic coupling as a key ingredient.
Resumo:
The significance of thermal fluctuations in nucleation in structural first-order phase transitions has been examined. The prototypical case of martensitic transitions has been experimentally investigated by means of acoustic emission techniques. We propose a model based on the mean first-passage time to account for the experimental observations. Our study provides a unified framework to establish the conditions for isothermal and athermal transitions to be observed.
Resumo:
We study the driving-rate and temperature dependence of the power-law exponents that characterize the avalanche distribution in first-order phase transitions. Measurements of acoustic emission in structural transitions in Cu-Zn-Al and Cu-Al-Ni are presented. We show how the observed behavior emerges within a general framework of competing time scales of avalanche relaxation, driving rate, and thermal fluctuations. We confirm our findings by numerical simulations of a prototype model.
Resumo:
We have systematically analyzed six different reticular models with quenched disorder and no thermal fluctuations exhibiting a field-driven first-order phase transition. We have studied the nonequilibrium transition, appearing when varying the amount of disorder, characterized by the change from a discontinuous hysteresis cycle (with one or more large avalanches) to a smooth one (with only tiny avalanches). We have computed critical exponents using finite size scaling techniques and shown that they are consistent with universal values depending only on the space dimensionality d.
Resumo:
We discuss intrinsic noise effects in stochastic multiplicative-noise partial differential equations, which are qualitatively independent of the noise interpretation (Itô vs Stratonovich), in particular in the context of noise-induced ordering phase transitions. We study a model which, contrary to all cases known so far, exhibits such ordering transitions when the noise is interpreted not only according to Stratonovich, but also to Itô. The main feature of this model is the absence of a linear instability at the transition point. The dynamical properties of the resulting noise-induced growth processes are studied and compared in the two interpretations and with a reference Ginzburg-Landau-type model. A detailed discussion of a different numerical algorithm valid for both interpretations is also presented.
Resumo:
We study the problem of the partition of a system of initial size V into a sequence of fragments s1,s2,s3 . . . . By assuming a scaling hypothesis for the probability p(s;V) of obtaining a fragment of a given size, we deduce that the final distribution of fragment sizes exhibits power-law behavior. This minimal model is useful to understanding the distribution of avalanche sizes in first-order phase transitions at low temperatures.
Resumo:
The holographic dual of a finite-temperature gauge theory with a small number of flavors typically contains D-brane probes in a black hole background. At low temperature, the branes sit outside the black hole and the meson spectrum is discrete and possesses a mass gap. As the temperature increases, the branes approach a critical solution. Eventually, they fall into the horizon and a phase transition occurs. In the new phase, the meson spectrum is continuous and gapless. At large Nc and large't Hooft coupling, we show that this phase transition is always first order. In confining theories with heavy quarks, it occurs above the deconfinement transition for the glue.
Resumo:
The nonequilibrium phase transitions occurring in a fast-ionic-conductor model and in a reaction-diffusion Ising model are studied by Monte Carlo finite-size scaling to reveal nonclassical critical behavior; our results are compared with those in related models.