955 resultados para Transit Vehicle Design.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
"DOT-T-89-07"--P. [4] of cover.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
"DOT-T-89-12."
Resumo:
Urban Mass Transportation Administration, Washington, D.C.
Resumo:
Texas Department of Transportation, Austin
Resumo:
Transportation Department, Office of University Research, Washington, D.C.
Resumo:
Poor air quality has a huge detrimental effect, both economic and on the quality of life, in Australia. Transit oriented design (TOD), which aims to minimise urban sprawl and lower dependency on vehicles, leads to an increasing number of buildings close to transport corridors. This project aims at providing guidelines that are appropriate to include within City Plan to inform future planning along road corridors, and provide recommendations on when mitigation measures should be utilised.
Resumo:
This thesis presents the design process and the prototyping of a lightweight, modular robotic vehicle for the sustainable intensification of broadacre agriculture. Achieved by the joint operation of multiple autonomous vehicles to improve energy consumption, reduce labour, and increase efficiency in the application of inputs for the management of crops. The Small Robotic Farm Vehicle (SRFV) is a lightweight and energy efficient robotic vehicle with a configurable, modular design. It is capable of undertaking a range of agricultural tasks, including fertilising and weed management through mechanical intervention and precision spraying, whilst being more than an order of magnitude lower in weight than existing broadacre agricultural equipment.
Resumo:
In the current paper, the authors present an analysis of the structural characteristics of an intermediate rail vehicle and their effects on crash performance of the vehicle. Theirs is a simulation based analysis involving four stages. First, the crashworthiness of the vehicle is assessed by simulating an impact of the vehicle with a rigid wall. Second, the structural characteristics of the vehicle are analysed based on the structural behaviour during this impact and then the structure is modified. Third, the modified vehicle is tested again in the same impact scenario with a rigid wall. Finally, the modified vehicle is subjected to a modelled head-on impact which mirrors the real-life impact interface between two intermediate vehicles in a train impact. The emphasis of the current study is on the structural characteristics of the intermediate vehicle and the differences compared to an impact of a leading vehicle. The study shows that, similar to a leading vehicle, bending, or jackknifing is a main form of failure in this conventionally designed intermediate vehicle. It has also been found that the location of the door openings creates a major difference in the behaviour of an intermediate vehicle. It causes instability of the vehicle in the door area and leads to high stresses at the joint of the end beam with the solebar and shear stresses at the joint of the inner pillar with the cantrail. Apart from this, the shapes of the vehicle ends and impact interfaces are also different and have an effect on the crash performance of the vehicles. The simulation results allow the identification of the structural characteristics and show the effectiveness of relevant modifications. The conclusions have general relevance for the crashworthiness of rail vehicle design
Resumo:
Arkansas State Highway and Transportation Department, Little Rock
Resumo:
California Department of Transportation, Sacramento
Resumo:
Transportation Department, Office of University Research, Washington, D.C.