970 resultados para Train ferries.
Resumo:
Railway service is now the major transportation means in most of the countries around the world. With the increasing population and expanding commercial and industrial activities, a high quality of railway service is the most desirable. We present an application of genetic algorithms (GA) to search for the appropriate coasting point(s) and investigate the possible improvement on fitness of genes. Single and multiple coasting point control with simple GA are developed to attain the solutions and their corresponding train movement is examined. The multiple coasting point control with hierarchical genetic algorithm (HGA) is then proposed to integrate the determination of the number of coasting points.
Resumo:
Balancing between the provision of high quality of service and running within a tight budget is one of the biggest challenges for most metro railway operators around the world. Conventionally, one possible approach for the operator to adjust the time schedule is to alter the stop time at stations, if other system constraints, such as traction equipment characteristic, are not taken into account. Yet it is not an effective, flexible and economical method because the run-time of a train simply cannot be extended without limitation, and a balance between run-time and energy consumption has to be maintained. Modification or installation of a new signalling system not only increases the capital cost, but also affects the normal train service. Therefore, in order to procure a more effective, flexible and economical means to improve the quality of service, optimisation of train performance by coasting point identification has become more attractive and popular. However, identifying the necessary starting points for coasting under the constraints of current service conditions is no simple task because train movement is attributed by a large number of factors, most of which are non-linear and inter-dependent. This paper presents an application of genetic algorithms (GA) to search for the appropriate coasting points and investigates the possible improvement on computation time and fitness of genes.
Resumo:
Computer simulation has been widely accepted as an essential tool for the analysis of many engineering systems. It is nowadays perceived to be the most readily available and feasible means of evaluating operations in real railway systems. Based on practical experience and theoretical models developed in various applications, this paper describes the design of a general-purpose simulation system for train operations. Its prime objective is to provide a single comprehensive computer-aided engineering tool for most studies on railway operations so that various aspects of the railway systems with different operation characteristics can be investigated and analysed in depth. This system consists of three levels of simulation. The first is a single-train simulator calculating the running time of a train between specific points under different track geometry and traction conditions. The second is a dual-train simulator which is to find the minimum headway between two trains under different movement constraints, such as signalling systems. The third is a whole-system multi-train simulator which carries out process simulation of the real operation of a railway system according to a practical or planned train schedule or headway; and produces an overall evaluation of system performance.
Resumo:
Abstract Being as a relatively new approach of signalling, moving-block scheme significantly increases line capacity, especially on congested railways. This paper describes a simulation system for multi-train operation under moving-block signalling scheme. The simulator can be used to calculate minimum headways and safety characteristics under pre-set timetables or headways and different geographic and traction conditions. Advanced software techniques are adopted to support the flexibility within the simulator so that it is a general-purpose computer-aided design tool to evaluate the performance of moving block signalling.
Resumo:
This paper proposes a train movement model with fixed runtime that can be employed to find feasible control strategies for a single train along an inter-city railway line. The objective of the model is to minimize arrival delays at each station along railway lines. However, train movement is a typical nonlinear problem for complex running environments and different requirements. A heuristic algorithm is developed to solve the problem in this paper and the simulation results show that the train could overcome the disturbance from train delay and coordinates the operation strategies to sure punctual arrival of trains at the destination. The developed algorithm can also be used to evaluate the running reliability of trains in scheduled timetables.
Resumo:
Planning on utilization of train-set is one of the key tasks of transport organization for passenger dedicated railway in China. It also has strong relationships with timetable scheduling and operation plans at a station. To execute such a task in a railway hub pooling multiple railway lines, the characteristics of multiple routing for train-set is discussed in term of semicircle of train-sets' turnover. In programming the described problem, the minimum dwell time is selected as the objectives with special derive constraints of the train-set's dispatch, the connecting conditions, the principle of uniqueness for train-sets, and the first plus for connection in the same direction based on time tolerance σ. A compact connection algorithm based on time tolerance is then designed. The feasibility of the model and the algorithm is proved by the case study. The result indicates that the circulation model and algorithm about multiple routing can deal with the connections between the train-sets of multiple directions, and reduce the train's pulling in or leaving impact on the station's throat.
Resumo:
In open railway markets, coordinating train schedules at an interchange station requires negotiation between two independent train operating companies to resolve their operational conflicts. This paper models the stakeholders as software agents and proposes an agent negotiation model to study their interaction. Three negotiation strategies have been devised to represent the possible objectives of the stakeholders, and they determine the behavior in proposing offers to the proponent. Empirical simulation results confirm that the use of the proposed negotiation strategies lead to outcomes that are consistent with the objectives of the stakeholders.
Resumo:
Railway timetabling is an important process in train service provision as it matches the transportation demand with the infrastructure capacity while customer satisfaction is also considered. It is a multi-objective optimisation problem, in which a feasible solution, rather than the optimal one, is usually taken in practice because of the time constraint. The quality of services may suffer as a result. In a railway open market, timetabling usually involves rounds of negotiations among a number of self-interested and independent stakeholders and hence additional objectives and constraints are imposed on the timetabling problem. While the requirements of all stakeholders are taken into consideration simultaneously, the computation demand is inevitably immense. Intelligent solution-searching techniques provide a possible solution. This paper attempts to employ a particle swarm optimisation (PSO) approach to devise a railway timetable in an open market. The suitability and performance of PSO are studied on a multi-agent-based railway open-market negotiation simulation platform.
Resumo:
Train delay is one of the most important indexes to evaluate the service quality of the railway. Because of the interactions of movement among trains, a delayed train may conflict with trains scheduled on other lines at junction area. Train that loses conflict may be forced to stop or slow down because of restrictive signals, which consequently leads to the loss of run-time and probably enlarges more delays. This paper proposes a time-saving train control method to recover delays as soon as possible. In the proposed method, golden section search is adopted to identify the optimal train speed at the expected time of restrictive signal aspect upgrades, which enables the train to depart from the conflicting area as soon as possible. A heuristic method is then developed to attain the advisory train speed profile assisting drivers in train control. Simulation study indicates that the proposed method enables the train to recover delays as soon as possible in case of disturbances at railway junctions, in comparison with the traditional maximum traction strategy and the green wave strategy.
Resumo:
In this paper, a three-dimensional nonlinear rigid body model has been developed for the investigation of the crashworthiness of a passenger train using the multibody dynamics approach. This model refers to a typical design of passenger cars and train constructs commonly used in Australia. The high-energy and low-energy crush zones of the cars and the train constructs are assumed and the data are explicitly provided in the paper. The crash scenario is limited to the train colliding on to a fixed barrier symmetrically. The simulations of a single car show that this initial design is only applicable for the crash speed of 35 km/h or lower. For higher speeds (e.g. 140 km/h), the crush lengths or crush forces or both the crush zone elements will have to be enlarged. It is generally better to increase the crush length than the crush force in order to retain the low levels of the longitudinal deceleration of the passenger cars.
Resumo:
The reliability of urban passenger trains is a critical performance measure for passenger satisfaction and ultimately market share. A delay to one train in a peak period can have a severe effect on the schedule adherence of other trains. This paper presents an analytically based model to quantify the expected positive delay for individual passenger trains and track links in an urban rail network. The model specifically addresses direct delay to trains, knock-on delays to other trains, and delays at scheduled connections. A solution to the resultant system of equations is found using an iterative refinement algorithm. Model validation, which is carried out using a real-life suburban train network consisting of 157 trains, shows the model estimates to be on average within 8% of those obtained from a large scale simulation. Also discussed, is the application of the model to assess the consequences of increased scheduled slack time as well as investment strategies designed to reduce delay.
Resumo:
Travelling by public transport is usually regarded as boring and uninteresting. Refraining from talking to the stranger next to you may be due to limitations that are self-imposed and further corroborated by social expectations and cultural norms that govern behaviour in public space. Our design research into passenger interactions on board of urban commuter trains has informed the development of the TrainRoulette prototype – a mobile app for situated, real-time chats between train passengers. We study the impact of our design intervention on shaping perceptions of the train journey experience. Moreover, we are interested in the implications of such ICT-mediated interactions within train journeys for stimulating social offline interactions and new forms of passenger engagement.
Resumo:
Constructing train schedules is vital in railways. This complex and time consuming task is however made more difficult by additional requirements to make train schedules robust to delays and other disruptions. For a timetable to be regarded as robust, it should be insensitive to delays of a specified level and its performance with respect to a given metric, should be within given tolerances. In other words the effect of delays should be identifiable and should be shown to be minimal. To this end, a sensitivity analysis is proposed that identifies affected operations. More specifically a sensitivity analysis for determining what operation delays cause each operation to be affected is proposed. The information provided by this analysis gives another measure of timetable robustness and also provides control information that can be used when delays occur in practice. Several algorithms are proposed to identify this information and they utilise a disjunctive graph model of train operations. Upon completion the sets of affected operations can also be used to define the impact of all delays without further disjunctive graph evaluations.