997 resultados para Topoisomerase-ii
Resumo:
Topoisomerase II is able to break and rejoin double-strand DNA. It controls the topological state and forms and resolves knots and catenanes. Not much is known about the relation between the chromosome segregation and condensation defects as found in yeast top2 mutants and the role of topoisomerase II in meiosis. We studied meiosis in a heat-sensitive top2 mutant of Schizosaccharomyces pombe. Topoisomerase II is not required until shortly before meiosis I. The enzyme is necessary for condensation shortly before the first meiotic division but not for early meiotic prophase condensation. DNA replication, prophase morphology, and dynamics of the linear elements are normal in the top2 mutant. The top2 cells are not able to perform meiosis I. Arrested cells have four spindle pole bodies and two spindles but only one nucleus, suggesting that the arrest is nonregulatory. Finally, we show that the arrest is partly solved in a top2 rec7 double mutant, indicating that topoisomerase II functions in the segregation of recombined chromosomes. We suggest that the inability to decatenate the replicated DNA is the primary defect in top2. This leads to a loss of chromatin condensation shortly before meiosis I, failure of sister chromatid separation, and a nonregulatory arrest.
Resumo:
DNA topoisomerase II is a nuclear enzyme essential for chromosome dynamics and DNA metabolism. In mammalian cells, two genetically and biochemically distinct topoisomerase II forms exist, which are designated topoisomerase II alpha and topoisomerase II beta. In our studies of human topoisomerase II, we have found that a substantial fraction of the enzyme exists as alpha/beta heterodimers in HeLa cells. The ability to form heterodimers was verified when human topoisomerases II alpha and II beta were coexpressed in yeast and investigated in a dimerization assay. Analysis of purified heterodimers shows that these enzymes maintain topoisomerase II specific catalytic activities. The natural existence of an active heterodimeric subclass of topoisomerase II merits attention whenever topoisomerases II alpha and II beta function, localization, and cell cycle regulation are investigated.
Resumo:
Type II DNA topoisomerases, which create a transient gate in duplex DNA and transfer a second duplex DNA through this gate, are essential for topological transformations of DNA in prokaryotic and eukaryotic cells and are of interest not only from a mechanistic perspective but also because they are targets of agents for anticancer and antimicrobial chemotherapy. Here we describe the structure of the molecule of human topoisomerase II [DNA topoisomerase (ATP-hydrolyzing), EC 5.99.1.3] as seen by scanning transmission electron microscopy. A globular approximately 90-angstrom diameter core is connected by linkers to two approximately 50-angstrom domains, which were shown by comparison with genetically truncated Saccharomyces cerevisiae topoisomerase II to contain the N-terminal region of the approximately 170-kDa subunits and that are seen in different orientations. When the ATP-binding site is occupied by a nonhydrolyzable ATP analog, a quite different structure is seen that results from a major conformational change and consists of two domains approximately 90 angstrom and approximately 60 angstrom in diameter connected by a linker, and in which the N-terminal domains have interacted. About two-thirds of the molecules show an approximately 25 A tunnel in the apical part of the large domain, and the remainder contain an internal cavity approximately 30 A wide in the large domain close to the linker region. We propose that structural rearrangements lead to this displacement of an internal tunnel. The tunnel is likely to represent the channel through which one DNA duplex, after capture in the clamp formed by the N-terminal domains, is transferred across the interface between the enzyme's subunits. These images are consistent with biochemical observations and provide a structural basis for understanding the reaction of topoisomerase II.
Resumo:
A covalently cross-linked dimer of yeast DNA topoisomerase II was created by fusing the enzyme with the GCN4 leucine zipper followed by two glycines and a cysteine. Upon oxidation of the chimeric protein, a disulfide bond forms between the two carboxyl termini, covalently and intradimerically cross-linking the two protomers. In addition, all nine of the cysteines naturally occurring in topoisomerase II have been changed to alanines in this construct. This cross-linked, cysteine-less topoisomerase II is catalytically active in DNA duplex passage as indicated by ATP-dependent DNA supercoil relaxation and kinetoplast DNA decatenation assays. However, these experiments do not directly distinguish between a "one-gate" and a "two-gate" mechanism for the enzyme.
Resumo:
DNA topoisomerases are ubiquitous nuclear enzymes that govern the topological interconversions of DNA by transiently breaking/rejoining the phosphodiester backbone of one (type I) or both (type II) strands of the double helix. Consistent with these functions, topoisomerases play key roles in many aspects of DNA metabolism. Type II DNA topoisomerase (topo II) is vital for various nuclear processes, including DNA replication, chromosome segregation, and maintenance of chromosome structure. Topo II expression is regulated at multiple stages, including transcriptional, posttranscriptional, and posttranslational levels, by a multitude of signaling factors. Topo II is also the cellular target for a variety of clinically relevant anti-tumor drugs. Despite significant progress in our understanding of the role of topo II in diverse nuclear processes, several important aspects of topo II function, expression, and regulation are poorly understood. We have focused this review specifically on eukaryotic DNA topoisomerase II, with an emphasis on functional and regulatory characteristics.
Resumo:
The gene encoding type II DNA topoisomerase from the kinetoplastid hemoflagellated protozoan parasite Leishmania donovani (LdTOP2) was isolated from a genomic DNA library of this parasite. DNA sequence analysis revealed an ORF of 3711 bp encoding a putative protein of 1236 amino acids with no introns. The deduced amino acid sequence of LdTOP2 showed strong homologies to TOP2 sequences from other kinetoplastids, namely Crithidia and Trypanosoma spp. with estimated identities of 86 and 68%, respectively. LdTOP2 shares a much lower identity of 32% with its human homologue. LdTOP2 is located as a single copy on a chromosome in the 0.7 Mb region in the L.donovani genome and is expressed as a 5 kb transcript. 5′-Mapping studies indicate that the LdTOP2 gene transcript is matured post-transcriptionally with the trans-splicing of the mini-exon occurring at –639 from the predicted initiation site. Antiserum raised in rabbit against glutathione S-transferase fusion protein containing the major catalytic portion of the recombinant L.donovani topoisomerase II protein could detect a band on western blots at ∼132 kDa, the expected size of the entire protein. Use of the same antiserum for immunolocalisation analysis led to the identification of nuclear, as well as kinetoplast, antigens for L.donovani topoisomerase II. The in vitro biochemical properties of the full-length recombinant LdTOP2 when overexpressed in E.coli were similar to the Mg(II) and ATP-dependent activity found in cell extracts of L.donovani.
Resumo:
Recent biochemical and crystallographic results suggest that a type II DNA topoisomerase acts as an ATP-modulated clamp with two sets of jaws at opposite ends: a DNA-bound enzyme can admit a second DNA through one set of jaws; upon binding ATP, this DNA is passed through an enzyme-mediated opening in the first DNA and expelled from the enzyme through the other set of jaws. Experiments based on the introduction of reversible disulfide links across one dimer interface of yeast DNA topoisomerase II have confirmed this mechanism. The second DNA is found to enter the enzyme through the gate formed by the N-terminal parts of the enzyme and leave it through the gate close to the C termini.
Resumo:
Background: Mitomycin C and etoposide have both demonstrated activity against gastric carcinoma. Etoposide is a topoisomerase II inhibitor with evidence for phase-specific and schedule-dependent activity. Patients and method. Twenty-eight consecutive patients with advanced upper gastrointestinal adenocarcinoma were treated with intravenous (i.v.) bolus mitomycin C 6 mg/m2 on day 1 every 21 days to a maximum of four courses. Oral etoposide capsules 50 mg b.i.d. (or 35 mg b.i.d. liquid) were administered days 1 to 10 extending to 14 days in subsequent courses if absolute neutrophil count >1.5 x 109/l on day 14 of first course, for up to six courses. Results: Twenty-six patients were assessed for response of whom 12 had measurable disease and 14 evaluable disease. Four patients had a documented response (one complete remission, three partial remissions) with an objective response rate of 15% (95% confidence interval (95% CI) 4%-35%). Eight patients had stable disease and 14 progressive disease. The median survival was six months. The schedule was well tolerated with no treatment-related deaths. Nine patients experienced leucopenia (seven grade II and two grade III). Nausea and vomiting (eight grade II, one grade III), fatigue (eight grade II, two grade III) and anaemia (seven grade II, two grade III) were the predominant toxicities. Conclusion: This out-patient schedule is well tolerated and shows modest activity in the treatment of advanced upper gastrointestinal adenocarcinoma. Further studies using protracted schedules of etoposide both orally and as infusional treatment should be developed.
Resumo:
Topoisomerase II (topo II) is a dyadic enzyme found in all eukaryotic cells. Topo II is involved in a number of cellular processes related to DNA metabolism, including DNA replication, recombination and the maintenance of genomic stability. We discovered a correlation between the development of postnatal testis and increased binding of topo IIalpha to the chromatin fraction. We used this observation to characterize DNA-binding specificity and catalytic properties of purified testis topo IIalpha. The results indicate that topo IIalpha binds a substrate containing the preferred site with greater affinity and, consequently, catalyzes the conversion of form I to form IV DNA more efficiently in contrast to substrates lacking such a site. Interestingly, topo IIalpha displayed high-affinity and cooperativity in binding to the scaffold associated region. In contrast to the preferred site, however, high-affinity binding of topo IIalpha to the scaffold-associated region failed to result in enhanced catalytic activity. Intriguingly, competition assays involving scaffold-associated region revealed an additional DNA-binding site within the dyadic topo IIalpha. These results implicate a dual role for topo IIalpha in vivo consistent with the notion that its sequestration to the chromatin might play a role in chromosome condensation and decondensation during spermatogenesis.
Resumo:
以贾第虫、毛滴虫、内变形虫和微抱子虫等为代表的几类原生生物,不仅因为他们的寄生致病性而在医学上长期备受关注,它们的进化地位也是一个十分令人注目的问题。因为曾认为它们不具线粒体等细胞器,再加上一些分子系统学研究表明它们处在真核生物的最基部,因此不少人认为它们是在线粒体产生之前即已分化的极原始真核生物,其进化地位是处在原核生物向真核生物的过渡阶段,并有人称之为achezoa。这一发现一度被认为对探讨真核细胞(生物)的起源进化极为重要,是进化生物学上的重要突破。然而,近年来不断有新的证据对此提出质疑,其进化地位也就存在较大争议。本文首先利用PCR扩增、测序和基因组数据库搜索等技术方法鉴定了蓝氏贾第虫(Giardialamblia)、阴道毛滴虫(Trichomonasvaginalis)和痢疾内变形虫(entamoebahistolytica)的II型DNA拓扑异构酶基因序列。RT-PCR和序列分析表明它们均不具内含子。蛋白质序列搜索的结果表明它们与其它真核生物的DNA拓扑异构酶H是高度同源的。用生物信息学的方法,我们还对这些酶的性质进行了初步分析。分析还表明蓝氏贾第虫的DNA拓扑异构酶H具有一些不同于其.宿主的特征,如在ATPase区和中间区有六个插入,中间区要长大约100个氨基酸,而C端区又短大约200个氨基酸且富含带电荷的氨基酸残基。这些结果对研制以该酶为靶分子的专一性抗贾第虫药物具有指导意义。其次,将上述获得的序列数据结合GenBank数据库中已有的脑炎微抱子虫(Encephalitozooncuniculi)和其它一系列处在不同进化地位的真核生物的相应序列数据,用多种方法构建出分子系统树,对这些"无线粒体"原生生物的进化地位进行了探讨,并对"长枝吸引"对系统树的影响进行了分析。结果表明,由于DNA拓扑异构酶H的特点和可以克服"长枝吸引"等以往分子系统分析中的不足,所构建的系统树不仅能有效地反映出已普遍接受的真核生物各主要类群的系统关系,而且显示出这些"无线粒体"原生动物不同于以前系统树所反映的进化地位:它们并非是最早分支出来的真核生物,而是在具有线粒体的生物如动基体类或菌虫类等之后才分化的、分别属于不同进化地位的类群。结合近来它们中发现了类似线粒体细胞器等证据,我们认为这些所谓"无线粒体"的原生生物虽然其中有些种类(如以贾第虫为代表的双滴虫类)进化地位很低等,对探讨真核细胞的早期进化具有一定意义,但总体上它们并非过去所认为的那么极端原始,它们应该是线粒体产生之后才分别分化出来的不同生物类群
Resumo:
BACKGROUND: The relationship between predictive proteins and tumors presenting cancer stem cells (CSCs) profiles in oral tumors is still poorly understood. This study aims to identify the relationship between topoisomerases I, II alpha, and III alpha and putative CSCs immunophenotype in oral squamous cell carcinoma (OSCC) and determine its influence on prognosis. METHODS: The following data were retrieved from 127 patients: age, gender, primary anatomic site, smoking and alcohol intake, recurrence, metastases, histologic classification, treatment, and survival. An immunohistochemical study for topoisomerases I, II alpha, and III alpha was performed in a tissue microarray containing 127 paraffin blocks of OSCCs. RESULTS: In univariate analysis, topoisomerases expression showed significant differences according to CSCs profiles and p53 immunoexpression, but not with survival. Topoisomerases II alpha and III alpha also showed significant relationship with lymph node metastasis. The multivariate test confirmed these associations. CONCLUSIONS: The results that all topoisomerases correlates with OSCC CSCs may indicate a role for topoisomerases in head and neck carcinogenesis. Notwithstanding, it is plausible that other members of topoisomerases family could represent novel therapeutical targets in oral squamous cell carcinoma. J Oral Pathol Med (2012) 41: 762-768
Resumo:
To ensure the success of systemic gene therapy, it is critical to enhance the tumor specificity and activity of the promoter. In the current study, we identified the breast cancer-specific activity of the topoisomerase IIα promoter. We further showed that cdk2 and cyclin A activate topoisomerase IIα promoter in a breast cancer-specific manner. An element containing an inverted CCAAT box (ICB) was shown to respond this signaling. When the ICB-harboring topoisomerase IIα minimal promoter was linked with an enhancer sequence from the cytomegalovirus immediate early gene promoter (CMV promoter), this composite promoter, CT90, exhibited activity comparable to or higher than the CMV promoter in breast cancer cells in vitro and in vivo, yet expresses much lower activity in normal cell lines and normal organs than the CMV promoter. A CT90-driven construct expressing BikDD, a potent pro-apoptotic gene, was shown to selectively kill breast cancer cells in vitro and to suppress mammary tumor development in an animal model of intravenously administrated, liposome-delivered gene therapy. Expression of BikDD was readily detectable in the tumors but not in the normal organs of CT90-BikDD-treated animals. Finally, we demonstrated that CT90-BikDD treatment potentially enhanced the sensitivity of breast cancer cells to chemotherapeutic agents, especially doxorubicin and taxol. The results indicate that liposomal CT90-BikDD is a novel and effective systemic breast cancer-targeting gene therapy, and its combination with chemotherapy may further improve the current adjuvant therapy for breast cancer. ^
Resumo:
Topoisomerase inhibitors are effective for antibacterial and anticancer therapy because they can lead to the accumulation of the intermediate DNA cleavage complex formed by the topoisomerase enzymes, which trigger cell death. Here we report the application of a novel enzyme-based high-throughput screening assay to identify natural product extracts that can lead to increased accumulation of the DNA cleavage complex formed by recombinant Yersinia pestistopoisomerase I as part of a larger effort to identify new antibacterial compounds. Further characterization and fractionation of the screening positives from the primary assay led to the discovery of a depside, anziaic acid, from the lichen Hypotrachyna sp. as an inhibitor for both Y. pestis and Escherichia colitopoisomerase I. In in vitro assays, anziaic acid exhibits antibacterial activity against Bacillus subtilis and a membrane permeable strain of E. coli. Anziaic acid was also found to act as an inhibitor of human topoisomerase II but had little effect on human topoisomerase I. This is the first report of a depside with activity as a topoisomerase poison inhibitor and demonstrates the potential of this class of natural products as a source for new antibacterial and anticancer compounds.
Resumo:
DNA minor groove binders are an important class of chemotherapeutic agents. These small molecule inhibitors interfere with various cellular processes like DNA replication and transcription. Several benzimidazole derivatives showed affinity towards the DNA minor groove. In this study we show the synthesis and biological studies of a novel benzimidazole derivative (MH1), that inhibits topoisomerase II activity and in vitro transcription. UV-visible and fluorescence spectroscopic methods in conjunction with Hoechst displacement assay demonstrate that MH1 binds to DNA at the minor groove. Cytotoxic studies showed that leukemic cells are more sensitive to MH1 compared to cancer cells of epithelial origin. Further, we find that MH1 treatment leads to cell cycle arrest at G2/M, at early time points in Molt4 cells. Finally multiple cellular assays demonstrate that MH1 treatment leads to reduction in MMP, induction of apoptosis by activating CASPASE 9 and CASPASE 3. Thus our study shows MH1, a novel DNA minor groove binder, induces cytotoxicity efficiently in leukemic cells by activating the intrinsic pathway of apoptosis.
Resumo:
In addition to its medical importance as parasitic pathogen, Entamoeba has aroused people's interest in its evolutionary status for a long time. Lacking mitochondrion and other intracellular organelles common to typical eukaryotes, Entamoeba and several other amitochondrial protozoans have been recognized as ancient pre-mitochondriate eukaryotes and named "archezoa", the most primitive extant eukaryotes. It was suggested that they might be living fossils that remained in a primitive stage of evolution before acquisition of organelles, lying close to the transition between prokaryotes and eukaryotes. However, recent studies revealed that Entamoeba contained an organelle, "crypton" or "mitosome", which was regarded as specialized or reductive mitochondrion. Relative molecular phylogenetic analyses also indicated the existence or the probable existence of mitochondrion in Entamoeba. Our phylogenetic analysis based on DNA topoisomerase II strongly suggested its divergence after some mitchondriate eukaryotes. Here, all these recent researches are reviewed and the evolutionary status of Entamoeba is discussed.