923 resultados para ToF-SIMS, PLS, multivariate analysis, funtionalized surfaces
Resumo:
Spectral signal intensities, especially in 'real-world' applications with nonstandardized sample presentation due to uncontrolled variables/factors, commonly require additional spectral processing to normalize signal intensity in an effective way. In this study, we have demonstrated the complexity of choosing a normalization routine in the presence of multiple spectrally distinct constituents by probing a dataset of Raman spectra. Variation in absolute signal intensity (90.1% of total variance) of the Raman spectra of these complex biological samples swamps the variation in useful signals (9.4% of total variance), degrading its diagnostic and evaluative potential.
The size and shape of shells used by hermit crabs: A multivariate analysis of Clibanarius erythropus
Resumo:
Shell attributes Such as weight and shape affect the reproduction, growth, predator avoidance and behaviour of several hermit crab species. Although the importance of these attributes has been extensively investigated, it is still difficult to assess the relative role of size and shape. Multivariate techniques allow concise and efficient quantitative analysis of these multidimensional properties, and this paper aims to understand their role in determining patterns of hermit crab shell use. To this end, a multivariate approach based on a combination of size-unconstrained (shape) PCA and RDA ordination was used to model the biometrics of southern Mediterranean Clibanarius erythropus Populations and their shells. Patterns of shell utilization and morphological gradients demonstrate that size is more important than shape, probably due to the limited availability of empty shells in the environment. The shape (e.g. the degree of shell elongation) and weight of inhabited shells vary considerably in both female and male crabs. However, these variations are clearly accounted for by crab biometrics in males only. Oil the basis of statistical evidence and findings from past studies. it is hypothesized that larger males of adequate size and strength have access to the larger, heavier and relatively more available shells of the globose Osilinus turbinatus, which cannot be used by average-sized males or by females investing energy in egg production. This greater availability allows larger males to select more Suitable Shapes. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
We examined variability in hierarchical beta diversity across ecosystems, geographical gradients, and organism groups using multivariate spatial mixed modeling analysis of two independent data sets. The larger data set comprised reported ratios of regional species richness (RSR) to local species richness (LSR) and the second data set consisted of RSR: LSR ratios derived from nested species-area relationships. There was a negative, albeit relatively weak, relationship between beta diversity and latitude. We found only relatively subtle differences in beta diversity among the realms, yet beta diversity was lower in marine systems than in terrestrial or freshwater realms. Beta diversity varied significantly among organisms' major characteristics such as body mass, trophic position, and dispersal type in the larger data set. Organisms that disperse via seeds had highest beta diversity, and passively dispersed organisms showed the lowest beta diversity. Furthermore, autotrophs had lower beta diversity than organisms higher up the food web; omnivores and carnivores had consistently higher beta diversity. This is evidence that beta diversity is simultaneously controlled by extrinsic factors related to geography and environment, and by intrinsic factors related to organism characteristics.
Resumo:
Biodegradable polymers, such as PLA (Polylactide), come from renewable resources like corn starch and if disposed of correctly, degrade and become harmless to the ecosystem making them attractive alternatives to petroleum based polymers. PLA in particular is used in a variety of applications including medical devices, food packaging and waste disposal packaging. However, the industry faces challenges in melt processing of PLA due to its poor thermal stability which is influenced by processing temperatures and shearing.
Identification and control of suitable processing conditions is extremely challenging, usually relying on trial and error, and often sensitive to batch to batch variations. Off-line assessment in a lab environment can result in high scrap rates, long lead times and lengthy and expensive process development. Scrap rates are typically in the region of 25-30% for medical grade PLA costing between €2000-€5000/kg.
Additives are used to enhance material properties such as mechanical properties and may also have a therapeutic role in the case of bioresorbable medical devices, for example the release of calcium from orthopaedic implants such as fixation screws promotes healing. Additives can also reduce the costs involved as less of the polymer resin is required.
This study investigates the scope for monitoring, modelling and optimising processing conditions for twin screw extrusion of PLA and PLA w/calcium carbonate to achieve desired material properties. A DAQ system has been constructed to gather data from a bespoke measurement die comprising melt temperature; pressure drop along the length of the die; and UV-Vis spectral data which is shown to correlate to filler dispersion. Trials were carried out under a range of processing conditions using a Design of Experiments approach and samples were tested for mechanical properties, degradation rate and the release rate of calcium. Relationships between recorded process data and material characterisation results are explored.
Resumo:
This study aims to optimize the water quality monitoring of a polluted watercourse (Leça River, Portugal) through the principal component analysis (PCA) and cluster analysis (CA). These statistical methodologies were applied to physicochemical, bacteriological and ecotoxicological data (with the marine bacterium Vibrio fischeri and the green alga Chlorella vulgaris) obtained with the analysis of water samples monthly collected at seven monitoring sites and during five campaigns (February, May, June, August, and September 2006). The results of some variables were assigned to water quality classes according to national guidelines. Chemical and bacteriological quality data led to classify Leça River water quality as “bad” or “very bad”. PCA and CA identified monitoring sites with similar pollution pattern, giving to site 1 (located in the upstream stretch of the river) a distinct feature from all other sampling sites downstream. Ecotoxicity results corroborated this classification thus revealing differences in space and time. The present study includes not only physical, chemical and bacteriological but also ecotoxicological parameters, which broadens new perspectives in river water characterization. Moreover, the application of PCA and CA is very useful to optimize water quality monitoring networks, defining the minimum number of sites and their location. Thus, these tools can support appropriate management decisions.
Resumo:
BACKGROUND: The aim of the current study was to assess whether widely used nutritional parameters are correlated with the nutritional risk score (NRS-2002) to identify postoperative morbidity and to evaluate the role of nutritionists in nutritional assessment. METHODS: A randomized trial on preoperative nutritional interventions (NCT00512213) provided the study cohort of 152 patients at nutritional risk (NRS-2002 ≥3) with a comprehensive phenotyping including diverse nutritional parameters (n=17), elaborated by nutritional specialists, and potential demographic and surgical (n=5) confounders. Risk factors for overall, severe (Dindo-Clavien 3-5) and infectious complications were identified by univariate analysis; parameters with P<0.20 were then entered in a multiple logistic regression model. RESULTS: Final analysis included 140 patients with complete datasets. Of these, 61 patients (43.6%) were overweight, and 72 patients (51.4%) experienced at least one complication of any degree of severity. Univariate analysis identified a correlation between few (≤3) active co-morbidities (OR=4.94; 95% CI: 1.47-16.56, p=0.01) and overall complications. Patients screened as being malnourished by nutritional specialists presented less overall complications compared to the not malnourished (OR=0.47; 95% CI: 0.22-0.97, p=0.043). Severe postoperative complications occurred more often in patients with low lean body mass (OR=1.06; 95% CI: 1-1.12, p=0.028). Few (≤3) active co-morbidities (OR=8.8; 95% CI: 1.12-68.99, p=0.008) were related with postoperative infections. Patients screened as being malnourished by nutritional specialists presented less infectious complications (OR=0.28; 95% CI: 0.1-0.78), p=0.014) as compared to the not malnourished. Multivariate analysis identified few co-morbidities (OR=6.33; 95% CI: 1.75-22.84, p=0.005), low weight loss (OR=1.08; 95% CI: 1.02-1.14, p=0.006) and low hemoglobin concentration (OR=2.84; 95% CI: 1.22-6.59, p=0.021) as independent risk factors for overall postoperative complications. Compliance with nutritional supplements (OR=0.37; 95% CI: 0.14-0.97, p=0.041) and supplementation of malnourished patients as assessed by nutritional specialists (OR=0.24; 95% CI: 0.08-0.69, p=0.009) were independently associated with decreased infectious complications. CONCLUSIONS: Nutritional support based upon NRS-2002 screening might result in overnutrition, with potentially deleterious clinical consequences. We emphasize the importance of detailed assessment of the nutritional status by a dedicated specialist before deciding on early nutritional intervention for patients with an initial NRS-2002 score of ≥3.
Resumo:
Background: Robot-mediated therapies offer entirely new approaches to neurorehabilitation. In this paper we present the results obtained from trialling the GENTLE/S neurorehabilitation system assessed using the upper limb section of the Fugl-Meyer ( FM) outcome measure. Methods: We demonstrate the design of our clinical trial and its results analysed using a novel statistical approach based on a multivariate analytical model. This paper provides the rational for using multivariate models in robot-mediated clinical trials and draws conclusions from the clinical data gathered during the GENTLE/S study. Results: The FM outcome measures recorded during the baseline ( 8 sessions), robot-mediated therapy ( 9 sessions) and sling-suspension ( 9 sessions) was analysed using a multiple regression model. The results indicate positive but modest recovery trends favouring both interventions used in GENTLE/S clinical trial. The modest recovery shown occurred at a time late after stroke when changes are not clinically anticipated. Conclusion: This study has applied a new method for analysing clinical data obtained from rehabilitation robotics studies. While the data obtained during the clinical trial is of multivariate nature, having multipoint and progressive nature, the multiple regression model used showed great potential for drawing conclusions from this study. An important conclusion to draw from this paper is that this study has shown that the intervention and control phase both caused changes over a period of 9 sessions in comparison to the baseline. This might indicate that use of new challenging and motivational therapies can influence the outcome of therapies at a point when clinical changes are not expected. Further work is required to investigate the effects arising from early intervention, longer exposure and intensity of the therapies. Finally, more function-oriented robot-mediated therapies or sling-suspension therapies are needed to clarify the effects resulting from each intervention for stroke recovery.
Resumo:
We discuss the modeling of dielectric responses of electromagnetically excited networks which are composed of a mixture of capacitors and resistors. Such networks can be employed as lumped-parameter circuits to model the response of composite materials containing conductive and insulating grains. The dynamics of the excited network systems are studied using a state space model derived from a randomized incidence matrix. Time and frequency domain responses from synthetic data sets generated from state space models are analyzed for the purpose of estimating the fraction of capacitors in the network. Good results were obtained by using either the time-domain response to a pulse excitation or impedance data at selected frequencies. A chemometric framework based on a Successive Projections Algorithm (SPA) enables the construction of multiple linear regression (MLR) models which can efficiently determine the ratio of conductive to insulating components in composite material samples. The proposed method avoids restrictions commonly associated with Archie’s law, the application of percolation theory or Kohlrausch-Williams-Watts models and is applicable to experimental results generated by either time domain transient spectrometers or continuous-wave instruments. Furthermore, it is quite generic and applicable to tomography, acoustics as well as other spectroscopies such as nuclear magnetic resonance, electron paramagnetic resonance and, therefore, should be of general interest across the dielectrics community.
Resumo:
Accurate monitoring of degradation levels in soils is essential in order to understand and achieve complete degradation of petroleum hydrocarbons in contaminated soils. We aimed to develop the use of multivariate methods for the monitoring of biodegradation of diesel in soils and to determine if diesel contaminated soils could be remediated to a chemical composition similar to that of an uncontaminated soil. An incubation experiment was set up with three contrasting soil types. Each soil was exposed to diesel at varying stages of degradation and then analysed for key hydrocarbons throughout 161 days of incubation. Hydrocarbon distributions were analysed by Principal Coordinate Analysis and similar samples grouped by cluster analysis. Variation and differences between samples were determined using permutational multivariate analysis of variance. It was found that all soils followed trajectories approaching the chemical composition of the unpolluted soil. Some contaminated soils were no longer significantly different to that of uncontaminated soil after 161 days of incubation. The use of cluster analysis allows the assignment of a percentage chemical similarity of a diesel contaminated soil to an uncontaminated soil sample. This will aid in the monitoring of hydrocarbon contaminated sites and the establishment of potential endpoints for successful remediation.
Resumo:
The South American (SA) rainy season is studied in this paper through the application of a multivariate Empirical Orthogonal Function (EOF) analysis to a SA gridded precipitation analysis and to the components of Lorenz Energy Cycle (LEC) derived from the National Centers for Environmental Prediction (NCEP) reanalysis. The EOF analysis leads to the identification of patterns of the rainy season and the associated mechanisms in terms of their energetics. The first combined EOF represents the northwest-southeast dipole of the precipitation between South and Central America, the South American Monsoon System (SAMS). The second combined EOF represents a synoptic pattern associated with the SACZ (South Atlantic convergence zone) and the third EOF is in spatial quadrature to the second EOF. The phase relationship of the EOFs, as computed from the principal components (PCs), suggests a nonlinear transition from the SACZ to the fully developed SAMS mode by November and between both components describing the SACZ by September-October (the rainy season onset). According to the LEC, the first mode is dominated by the eddy generation term at its maximum, the second by both baroclinic and eddy generation terms and the third by barotropic instability previous to the connection to the second mode by September-October. The predominance of the different LEC components at each phase of the SAMS can be used as an indicator of the onset of the rainy season in terms of physical processes, while the existence of the outstanding spectral peaks in the time dependence of the EOFs at the intraseasonal time scale could be used for monitoring purposes. Copyright (C) 2009 Royal Meteorological Society
Resumo:
This paper presents a GIS-based multicriteria flood risk assessment and mapping approach applied to coastal drainage basins where hydrological data are not available. It involves risk to different types of possible processes: coastal inundation (storm surge), river, estuarine and flash flood, either at urban or natural areas, and fords. Based on the causes of these processes, several environmental indicators were taken to build-up the risk assessment. Geoindicators include geological-geomorphologic proprieties of Quaternary sedimentary units, water table, drainage basin morphometry, coastal dynamics, beach morphodynamics and microclimatic characteristics. Bioindicators involve coastal plain and low slope native vegetation categories and two alteration states. Anthropogenic indicators encompass land use categories properties such as: type, occupation density, urban structure type and occupation consolidation degree. The selected indicators were stored within an expert Geoenvironmental Information System developed for the State of Sao Paulo Coastal Zone (SIIGAL), which attributes were mathematically classified through deterministic approaches, in order to estimate natural susceptibilities (Sn), human-induced susceptibilities (Sa), return period of rain events (Ri), potential damages (Dp) and the risk classification (R), according to the equation R=(Sn.Sa.Ri).Dp. Thematic maps were automatically processed within the SIIGAL, in which automata cells (""geoenvironmental management units"") aggregating geological-geomorphologic and land use/native vegetation categories were the units of classification. The method has been applied to the Northern Littoral of the State of Sao Paulo (Brazil) in 32 small drainage basins, demonstrating to be very useful for coastal zone public politics, civil defense programs and flood management.
Resumo:
Brazilian sugarcane spirits were analyzed to elucidate similarities and dissimilarities by principal component analysis. Nine aldehydes, six alcohols, and six metal cations were identified and quantified. Isobutanol (LD 202.9 mu gL-1), butiraldehyde (0.08-0.5 mu gL-1), ethanol (39-47% v/v), and copper (371-6068 mu gL-1) showed marked similarities, but the concentration levels of n-butanol (1.6-7.3 mu gL-1), sec-butanol (LD 89 mu gL-1), formaldehyde (0.1-0.74 mu gL-1), valeraldehyde (0.04-0.31 mu gL-1), iron (8.6-139.1 mu gL-1), and magnesium (LD 1149 mu gL-1) exhibited differences from samples.
Resumo:
The drying process of linseed oil, oxidized at 80 oC, has been investigated with rheology measurements, Fourier transformation infrared spectroscopy (FTIR), and time of flight secondary ion mass spectrometry (ToF-SIMS). The drying process can be divided into three main steps: initiation, propagation and termination. ToF-SIMS spectra show that the oxidation is initiated at the linolenic (three double bonds) and linoleic fatty acids (two double bonds). ToF-SIMS spectra reveal peaks that can be assigned to ketones, alcohols and hydroperoxides. In this article it is shown that FTIR in combination with ToF-SIMS are well suited tools for investigations of various fatty acid components and reaction products of linseed oil.