990 resultados para Tire rubber concrete
Resumo:
Pós-graduação em Engenharia Civil - FEIS
Resumo:
Pós-graduação em Engenharia Civil - FEIS
Resumo:
Microwave devulcanization has been studied as a method for elastomer recycling, which is based on the conversion of the reticulated and infusible structure of thermosetting rubbers in free polymeric chains able to be remolded by thermomechanical processing in recycling operations for the manufacture of other products. Elastomeric wastes are often irregularly discarded in nature, producing serious environmental damage, and their mechanical recycling is still considered a challenge. Thus, the development of alternatives for elastomer recycling is directly related to the actions of sustainable development and economic benefits to companies that pay to discard their wastes. The aim of this work is to evaluate the chemical modifications occurring in styrene butadiene rubber (SBR) after microwave devulcanization. Compounds of SBR were vulcanized in the presence of vulcanization agents and variable amounts of carbon black, and then the rubbers were milled and submitted to microwave treatment. Only the SBR with high carbon black content shows some portion of devulcanized material. However, the rubber with lower content of carbon black which was devulcanized by microwave radiation shows an increase in cross-link density. The microwave treatment also causes cross-link breaks mainly in polysulfidic bonds as well as decomposition of chemical groups containing sulfur attached to the chemical structure of SBR, while. the chemical bonds of higher energy such as monosulfidic bonds remain preserved. The improvement of the microwave method for rubber devulcanization represents a way for viable recycling of thermosetting rubbers.
Resumo:
Pesquisas sobre aplicação de borracha de pneus descartados em pavimentação asfáltica vêm sendo desenvolvidas desde a década de 1960, especialmente nos Estados Unidos e, desde o início da década de 1990, no Brasil, como alternativa para diminuição dos problemas ambientais gerados por estes resíduos sólidos. Esta pesquisa tem por objetivo avaliar o desempenho de três misturas asfálticas do tipo concreto asfáltico usinado à quente: duas empregando teores diferentes de borracha moída e óleo de xisto (CAP 40 + 12% de borracha + 10% de óleo de xisto e CAP 40 + 20% de borracha + 15% de óleo de xisto) e uma convencional. Este estudo faz parte de um programa de pesquisa coordenado pela Escola de Engenharia de São Carlos da Universidade de São Paulo (EESC-USP), Universidade Estadual de Maringá (UEM) e Petrobrás, envolvendo a execução de misturas com borracha e óleo de xisto em trechos experimentais. Foram realizadas dosagens Marshall e ensaios de resistência à tração, módulo de resiliência e fluência por compressão uniaxial estática. Os corpos-de-prova empregados nos ensaios foram moldados no teor ótimo de cimento asfáltico referente a cada uma das misturas. Constatou-se a viabilidade técnica da adição de óleo extensor para a incorporação de borracha de pneus descartados em concreto asfáltico, permitindo a obtenção de resultados satisfatórios quanto aos projetos de dosagem das misturas pelo método Marshall. Com base nos resultados dos ensaios realizados, acredita-se ser viável a execução de trechos experimentais empregando as duas misturas modificadas.
Concreto com agregados reciclados de borracha de pneu: resistência à compressão a altas temperaturas
Resumo:
A sustentabilidade é uma preocupação para a indústria da construção civil, uma vez que é responsável pelo consumo de uma grande quantidade de recursos naturais e por impactos ambientais. Assim, a utilização de agregados reciclados em substituição dos agregados naturais mostra-se benéfica ao minimizar os impactos ambientais, o consumo de recursos naturais e na redução de alguns problemas urbanos associados à acumulação de lixo. Neste contexto, o trabalho de investigação desenvolvido teve como objetivo o estudo da utilização de agregados reciclados de borracha de pneu na composição do concreto, contribuindo com uma alternativa sustentável para o problema do depósito de pneus após a sua vida útil. O trabalho laboratorial realizado compreendeu ensaios de resistência à compressão do concreto. Estudaram-se três composições de concreto, uma composição de referência, uma composição com uma taxa de substituição de 15% e outra com taxa de substituição de 30% de agregados naturais por agregados reciclados de borracha de pneu usados. Os diferentes provetes de concreto foram submetidos a vários níveis de carregamento (0,15fcd; 0,3fcd e 0,7fcd) e a diferentes níveis de temperatura (20, 300, 500 e 700ºC). Os resultados obtidos permitiram verificar que o aumento da percentagem de agregados de borracha reciclados de pneu inserido no concreto conduz a um aumento do controlo de fendilhação e minimiza o surgimento de fissuração de origem térmica.
Resumo:
Researches have shown that the introduction of rubber in concrete improves the features of its deformability, as well as contributes to environmental disposal of waste generated in the tire retreading process. Furthermore, there is a high availability of limestone within RN and CE country. Ignorance about this stone, does not allow its wide use as aggregate, leaving, this abundant supply idle. A composite of limestone gravel, with proportions of tire rubber waste which could be used as concrete would be an alternative to concrete for low applications. Therefore, this research aims to evaluate the characteristics of concrete containing limestone gravel and proportions of little aggregate replacement (sand) by tire rubber waste. To this goal, the material components of the concrete were characterized, concrete specimens with limestone gravel were made, from the dash 1.0: 2.5: 3.5, varying the water/cement ratio, and inserting a commercial plasticizer, without a proportion of residue, known as reference. From this, concrete with and without the presence of the additive in the same proportions were chosen, as well as these with the use of granite gravel, for being the most used. Selected the references, to these, replacements of little aggregate (sand) were added replaced by rubber waste from the tire retreading process, treated with 1M NaOH in proportions from 5.0 to 20.0 % by mass, cured and exposed to the semiarid environment. The results indicate the possibility of using limestone gravel in the concrete composition with workability correction using plasticizer. There was a decrease in the mechanical properties of the concrete with increments of waste rubber, but there is an improvement in toughness and deformability of the composite, which makes it interesting for the construction of non-structural concrete floors, as well as, the rubber waste delayed the hardening process, continuing to gain resistance after 28 days
Resumo:
Este trabajo se soporta sobre una base conformada por dos conceptos, que constituyen el horizonte contextual de la investigación: Derecho Administrativo y Comunidad de integración. Es claro que al hablar de una Comunidad de integración específica como la Comunidad Andina (CAN), incide de forma directa en la actividad del derecho administrativo.Ha sido necesario que los países que conforman los grupos de integración económica cedan parte de sus competencias para crear un ordenamiento jurídico de orden supranacional, el cual modifica la dinámica social de las relaciones comerciales y afecta la estructura de la administración pública, haciendo que el derecho administrativo no se limite a interactuar solo con derecho nacional. Esta mutua dependencia de las políticas internas y las regionales se realiza, entonces, cada vez que existe participación y compromiso de los Estados frente a las decisiones, de carácter vinculante o no. En esa medida surge el problema de investigación tendiente a esclarecer cómo ha sido la adopción de las decisiones e interpretaciones, emanadas de los mecanismos oficiales del Derecho Comunitario Andino, en el ordenamiento jurídico colombiano. La existencia de varios puntos de vista con respecto a la obligatoriedad o no de dicha adopción, moldea un tema de suficiente amplitud y profundidad para ser estudiado en un trabajo de investigación.
Resumo:
The low tenacity presented by the Portland cement pastes used in the oil wells cementation has been motivating several researches with attention focused on alternative materials. Additives have been developed to generate flexible pastes with mechanical resistance capable to support the expansions and retractions of the metallic covering of the wells that submit to the steam injection, technique very used to increase the recovery factor in oil reservoirs with high viscosity. A fresh paste with inadequate rheological behavior may commit the cementation process seriously, involving flaws that affect the performance of the paste substantially in the hardened state. This work proposes the elaboration and the rheological analysis of Portland cement pastes with addition of residues of rubber tire in several proportions, with the aim of minimizing the damages provoked in the hem cementing of these wells. By thermogravimetric analysis, the particles of eraser that go by the sieve of 0,5mm (35 mesh) opening and treated superficially with NaOH solution of 1 mol/L presented appropriate thermal resistance for wells that submit to thermal cyclic. The evaluation of the study based on the results of the rheological analysis of the pastes, complemented by the mechanical analysis, thickening, stability, tenor of free water and filtrate loss, being used as parameter a paste reference, without rubber addition. The results showed satisfactory rheology, passive of few corrections; considerable loss of mechanical resistance (traction and compression), compensated by earnings of tenacity, however with established limits for its application in oil wells; satisfactory stability, free water and thickening time
Resumo:
Thermal recovery methods, especially steam injection, have been used to produce heavy oils. However, these methods imply that the metallic casing-cement sheath interface is submitted to thermal cycling. As a consequence, cracking may develop due to the thermal expansion mismatch of such materials, which allows the flow of oil and gas through the cement sheath, with environmental and economical consequences. It is therefore important to anticipate interfacial discontinuities that may arise upon Thermal recovery. The present study reports a simple alternative method to measure the shear strength of casing-sheath interfaces using pushthrough geometry, applied to polymer-containing hardened cement slurries. Polyurethane and recycled tire rubber were added to Portland-bases slurries to improve the fracture energy of intrinsically brittle cement. Samples consisting of metallic casing sections surrounded by hardened polymer-cement composites were prepared and mechanically tested. The effect of thermal cycles was investigated to simulate temperature conditions encountered in steam injection recovery. The results showed that the addition of polyurethane significantly improved the shear strength of the casing-sheath interface. The strength values obtained adding 10% BWOC of polyurethane to a Portland-base slurry more than doubled with respect to that of polyurethane-free slurries. Therefore, the use of polyurethane significantly contributes to reduce the damage caused by thermal cycling to cement sheath, improving the safety conditions of oil wells and the recovery of heavy oils
Resumo:
Mode of access: Internet.
Resumo:
In this work it is assessed the performance of Portland cement-based mortar to the grouting of type II ceramic plates with the addition of unusable tire rubber powder. It is presented a bibliographical review about the subject in which is done the theoretical and methodological foundation of the whole investigative process. The analyzed universe comprises a sample of mortar to the grouting of conventional ceramic plates type II (reference sample) and five more samples to the grouting of ceramic plates type II, which were made up of the addition of unusable tire rubber powder in the respective proportion (in mass) of 4%, 8%, 12%, 16% and 20%. These mortar samples were subject to the trials of determination of the consistency index (Brazilian Standard NBR 13276:2005), water retention ( Brazilian Standard NBR 14992 Attachment B:2003), permeability in 240 minutes (Brazilian Standard NBR 14992 Attachment G:2003), absorption of water by immersion (Brazilian Standard NBR 9781:2013), resistance to compression (Brazilian Standard NBR14992 Attachment D: 2003), resistance to traction in the flexion (Brazilian Standard NBR 13279:2005), resistance of traction adherence (Brazilian Standard NBR 14081 part 4:2012) and hardened mass density (Brazilian Standard NBR 13280: 2005). It has been found out from the analyzes of the results in the trial the following situation: the reference mortar used met the established requirements in the norms of specifications corresponding to only six from the eight parameters assessed in the research; the mortar with addition of 4,0% of tire rubber powder met the established requirements corresponding to only the resistance to compression and the resistance of adherence to traction. Thus, the other kinds of mortar with addition of 8,0 %, 12,0 %, 16,0 % and 20,0 % of tire rubber powder met the requirements of specifications corresponding to only the resistance to compression and the resistance of adherence to traction. This result concludes that the adding of tire rubber powder does not grant improvement to the mortar of type II grouting to the laying of ceramic plates.
Resumo:
In this work it is assessed the performance of Portland cement-based mortar to the grouting of type II ceramic plates with the addition of unusable tire rubber powder. It is presented a bibliographical review about the subject in which is done the theoretical and methodological foundation of the whole investigative process. The analyzed universe comprises a sample of mortar to the grouting of conventional ceramic plates type II (reference sample) and five more samples to the grouting of ceramic plates type II, which were made up of the addition of unusable tire rubber powder in the respective proportion (in mass) of 4%, 8%, 12%, 16% and 20%. These mortar samples were subject to the trials of determination of the consistency index (Brazilian Standard NBR 13276:2005), water retention ( Brazilian Standard NBR 14992 Attachment B:2003), permeability in 240 minutes (Brazilian Standard NBR 14992 Attachment G:2003), absorption of water by immersion (Brazilian Standard NBR 9781:2013), resistance to compression (Brazilian Standard NBR14992 Attachment D: 2003), resistance to traction in the flexion (Brazilian Standard NBR 13279:2005), resistance of traction adherence (Brazilian Standard NBR 14081 part 4:2012) and hardened mass density (Brazilian Standard NBR 13280: 2005). It has been found out from the analyzes of the results in the trial the following situation: the reference mortar used met the established requirements in the norms of specifications corresponding to only six from the eight parameters assessed in the research; the mortar with addition of 4,0% of tire rubber powder met the established requirements corresponding to only the resistance to compression and the resistance of adherence to traction. Thus, the other kinds of mortar with addition of 8,0 %, 12,0 %, 16,0 % and 20,0 % of tire rubber powder met the requirements of specifications corresponding to only the resistance to compression and the resistance of adherence to traction. This result concludes that the adding of tire rubber powder does not grant improvement to the mortar of type II grouting to the laying of ceramic plates.
Resumo:
The low tenacity presented by the Portland cement pastes used in the oil wells cementation has been motivating several researches with attention focused on alternative materials. Additives have been developed to generate flexible pastes with mechanical resistance capable to support the expansions and retractions of the metallic covering of the wells that submit to the steam injection, technique very used to increase the recovery factor in oil reservoirs with high viscosity. A fresh paste with inadequate rheological behavior may commit the cementation process seriously, involving flaws that affect the performance of the paste substantially in the hardened state. This work proposes the elaboration and the rheological analysis of Portland cement pastes with addition of residues of rubber tire in several proportions, with the aim of minimizing the damages provoked in the hem cementing of these wells. By thermogravimetric analysis, the particles of eraser that go by the sieve of 0,5mm (35 mesh) opening and treated superficially with NaOH solution of 1 mol/L presented appropriate thermal resistance for wells that submit to thermal cyclic. The evaluation of the study based on the results of the rheological analysis of the pastes, complemented by the mechanical analysis, thickening, stability, tenor of free water and filtrate loss, being used as parameter a paste reference, without rubber addition. The results showed satisfactory rheology, passive of few corrections; considerable loss of mechanical resistance (traction and compression), compensated by earnings of tenacity, however with established limits for its application in oil wells; satisfactory stability, free water and thickening time
Resumo:
The waste tire is belonging to insoluble high polymer elastic materials. It takes hundreds of years to resolve the macromolecules of waste tire into the standard which does not pollute the environment. More and more waste tires are air stored which causes space occupation and mosquito-breeding in the places that will spread diseases. The disposal methods include landfill, stockpiles, dumping and incising into particles. However, all these methods are not technically and economically efficient. The trend for the development of waste tire treatment processes is low cost, on-site, and high product recovery at high energy efficiency. In this project, microwave energy has been applied for treatment of the waste tire in laboratory scale. Experimental conditions were varied in order to find the optimum processing parameters such as temperature and atmosphere. The microwave absorption capability of waste tire rubber was investigated by measuring its dielectric properties from room temperature to 800°C in stagnant air and pure nitrogen atmospheres, respectively, at both 915 and 2466MHz.The dielectric parameters data increase steadily at temperatures below 400°C. At temperatures above 400°C, the relative dielectric loss factor and relative dielectric constant begin to decrease. This is due to the solid phase of tire rubber begins to transform to gas phase and the release of volatiles. The calculations of microwave half-power depth and penetration depth of waste tire rubber show that the pyrolysis process significantly improves the microwave absorption capability of the waste tire rubber at low temperatures. The calculated reflection loss of the waste tire rubber suggests that its maximum microwave absorption can be obtained when the rubber has a thickness of 25mm at 915MHz. The sample dimension has a significant effect on the overall performance of microwave absorption in waste tire during pyrolysis and thus on the efficiency of microwave waste tire rubber pyrolysis.
Resumo:
The paper discusses the application of High Strength Concrete (HSC) technology for concrete production with the incorporation of Rice Husk Ash (RHA) residues by replacing a bulk of the material caking and rubber tires with partial aggregate volume, assessing their influence on the mechanical properties and durability. For concrete with RHA and rubber, it was possible to reduce the brittleness by increasing the energy absorbing capacity. With respect to abrasion, the RHA and rubber concretes showed lower mass loss than the concrete without residues, indicating that this material is attractive to be used in paving. It is thus hoped that these residues may represent a technological and ecological alternative for the production of concrete in construction works.