964 resultados para Time series regression
Resumo:
The scope of this paper was to analyze the association between homicides and public security indicators in Sao Paulo between 1996 and 2008, after monitoring the unemployment rate and the proportion of youths in the population. A time-series ecological study for 1996 and 2008 was conducted with Sao Paulo as the unit of analysis. Dependent variable: number of deaths by homicide per year. Main independent variables: arrest-incarceration rate, access to firearms, police activity. Data analysis was conducted using Stata. IC 10.0 software. Simple and multivariate negative binomial regression models were created. Deaths by homicide and arrest-incarceration, as well as police activity were significantly associated in simple regression analysis. Access to firearms was not significantly associated to the reduction in the number of deaths by homicide (p>0,05). After adjustment, the associations with both the public security indicators were not significant. In Sao Paulo the role of public security indicators are less important as explanatory factors for a reduction in homicide rates, after adjustment for unemployment rate and a reduction in the proportion of youths. The results reinforce the importance of socioeconomic and demographic factors for a change in the public security scenario in Sao Paulo.
Resumo:
The leaf area index (LAI) is a key characteristic of forest ecosystems. Estimations of LAI from satellite images generally rely on spectral vegetation indices (SVIs) or radiative transfer model (RTM) inversions. We have developed a new and precise method suitable for practical application, consisting of building a species-specific SVI that is best-suited to both sensor and vegetation characteristics. Such an SVI requires calibration on a large number of representative vegetation conditions. We developed a two-step approach: (1) estimation of LAI on a subset of satellite data through RTM inversion; and (2) the calibration of a vegetation index on these estimated LAI. We applied this methodology to Eucalyptus plantations which have highly variable LAI in time and space. Previous results showed that an RTM inversion of Moderate Resolution Imaging Spectroradiometer (MODIS) near-infrared and red reflectance allowed good retrieval performance (R-2 = 0.80, RMSE = 0.41), but was computationally difficult. Here, the RTM results were used to calibrate a dedicated vegetation index (called "EucVI") which gave similar LAI retrieval results but in a simpler way. The R-2 of the regression between measured and EucVI-simulated LAI values on a validation dataset was 0.68, and the RMSE was 0.49. The additional use of stand age and day of year in the SVI equation slightly increased the performance of the index (R-2 = 0.77 and RMSE = 0.41). This simple index opens the way to an easily applicable retrieval of Eucalyptus LAI from MODIS data, which could be used in an operational way.
Resumo:
In this paper, we present approximate distributions for the ratio of the cumulative wavelet periodograms considering stationary and non-stationary time series generated from independent Gaussian processes. We also adapt an existing procedure to use this statistic and its approximate distribution in order to test if two regularly or irregularly spaced time series are realizations of the same generating process. Simulation studies show good size and power properties for the test statistic. An application with financial microdata illustrates the test usefulness. We conclude advocating the use of these approximate distributions instead of the ones obtained through randomizations, mainly in the case of irregular time series. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
In the present work we perform an econometric analysis of the Tribal art market. To this aim, we use a unique and original database that includes information on Tribal art market auctions worldwide from 1998 to 2011. In Literature, art prices are modelled through the hedonic regression model, a classic fixed-effect model. The main drawback of the hedonic approach is the large number of parameters, since, in general, art data include many categorical variables. In this work, we propose a multilevel model for the analysis of Tribal art prices that takes into account the influence of time on artwork prices. In fact, it is natural to assume that time exerts an influence over the price dynamics in various ways. Nevertheless, since the set of objects change at every auction date, we do not have repeated measurements of the same items over time. Hence, the dataset does not constitute a proper panel; rather, it has a two-level structure in that items, level-1 units, are grouped in time points, level-2 units. The main theoretical contribution is the extension of classical multilevel models to cope with the case described above. In particular, we introduce a model with time dependent random effects at the second level. We propose a novel specification of the model, derive the maximum likelihood estimators and implement them through the E-M algorithm. We test the finite sample properties of the estimators and the validity of the own-written R-code by means of a simulation study. Finally, we show that the new model improves considerably the fit of the Tribal art data with respect to both the hedonic regression model and the classic multilevel model.
Resumo:
The thesis is concerned with local trigonometric regression methods. The aim was to develop a method for extraction of cyclical components in time series. The main results of the thesis are the following. First, a generalization of the filter proposed by Christiano and Fitzgerald is furnished for the smoothing of ARIMA(p,d,q) process. Second, a local trigonometric filter is built, with its statistical properties. Third, they are discussed the convergence properties of trigonometric estimators, and the problem of choosing the order of the model. A large scale simulation experiment has been designed in order to assess the performance of the proposed models and methods. The results show that local trigonometric regression may be a useful tool for periodic time series analysis.
Resumo:
The original cefepime product was withdrawn from the Swiss market in January 2007 and replaced by a generic 10 months later. The goals of the study were to assess the impact of this cefepime shortage on the use and costs of alternative broad-spectrum antibiotics, on antibiotic policy, and on resistance of Pseudomonas aeruginosa toward carbapenems, ceftazidime, and piperacillin-tazobactam. A generalized regression-based interrupted time series model assessed how much the shortage changed the monthly use and costs of cefepime and of selected alternative broad-spectrum antibiotics (ceftazidime, imipenem-cilastatin, meropenem, piperacillin-tazobactam) in 15 Swiss acute care hospitals from January 2005 to December 2008. Resistance of P. aeruginosa was compared before and after the cefepime shortage. There was a statistically significant increase in the consumption of piperacillin-tazobactam in hospitals with definitive interruption of cefepime supply and of meropenem in hospitals with transient interruption of cefepime supply. Consumption of each alternative antibiotic tended to increase during the cefepime shortage and to decrease when the cefepime generic was released. These shifts were associated with significantly higher overall costs. There was no significant change in hospitals with uninterrupted cefepime supply. The alternative antibiotics for which an increase in consumption showed the strongest association with a progression of resistance were the carbapenems. The use of alternative antibiotics after cefepime withdrawal was associated with a significant increase in piperacillin-tazobactam and meropenem use and in overall costs and with a decrease in susceptibility of P. aeruginosa in hospitals. This warrants caution with regard to shortages and withdrawals of antibiotics.
Resumo:
A time series is a sequence of observations made over time. Examples in public health include daily ozone concentrations, weekly admissions to an emergency department or annual expenditures on health care in the United States. Time series models are used to describe the dependence of the response at each time on predictor variables including covariates and possibly previous values in the series. Time series methods are necessary to account for the correlation among repeated responses over time. This paper gives an overview of time series ideas and methods used in public health research.
Resumo:
Objective: Processes occurring in the course of psychotherapy are characterized by the simple fact that they unfold in time and that the multiple factors engaged in change processes vary highly between individuals (idiographic phenomena). Previous research, however, has neglected the temporal perspective by its traditional focus on static phenomena, which were mainly assessed at the group level (nomothetic phenomena). To support a temporal approach, the authors introduce time-series panel analysis (TSPA), a statistical methodology explicitly focusing on the quantification of temporal, session-to-session aspects of change in psychotherapy. TSPA-models are initially built at the level of individuals and are subsequently aggregated at the group level, thus allowing the exploration of prototypical models. Method: TSPA is based on vector auto-regression (VAR), an extension of univariate auto-regression models to multivariate time-series data. The application of TSPA is demonstrated in a sample of 87 outpatient psychotherapy patients who were monitored by postsession questionnaires. Prototypical mechanisms of change were derived from the aggregation of individual multivariate models of psychotherapy process. In a 2nd step, the associations between mechanisms of change (TSPA) and pre- to postsymptom change were explored. Results: TSPA allowed a prototypical process pattern to be identified, where patient's alliance and self-efficacy were linked by a temporal feedback-loop. Furthermore, therapist's stability over time in both mastery and clarification interventions was positively associated with better outcomes. Conclusions: TSPA is a statistical tool that sheds new light on temporal mechanisms of change. Through this approach, clinicians may gain insight into prototypical patterns of change in psychotherapy.
Resumo:
OBJECTIVE. To determine the effectiveness of active surveillance cultures and associated infection control practices on the incidence of methicillin resistant Staphylococcus aureus (MRSA) in the acute care setting. DESIGN. A historical analysis of existing clinical data utilizing an interrupted time series design. ^ SETTING AND PARTICIPANTS. Patients admitted to a 260-bed tertiary care facility in Houston, TX between January 2005 through December 2010. ^ INTERVENTION. Infection control practices, including enhanced barrier precautions, compulsive hand hygiene, disinfection and environmental cleaning, and executive ownership and education, were simultaneously introduced during a 5-month intervention implementation period culminating with the implementation of active surveillance screening. Beginning June 2007, all high risk patients were cultured for MRSA nasal carriage within 48 hours of admission. Segmented Poisson regression was used to test the significance of the difference in incidence of healthcare-associated MRSA during the 29-month pre-intervention period compared to the 43-month post-intervention period. ^ RESULTS. A total of 9,957 of 11,095 high-risk patients (89.7%) were screened for MRSA carriage during the intervention period. Active surveillance cultures identified 1,330 MRSA-positive patients (13.4%) contributing to an admission prevalence of 17.5% in high-risk patients. The mean rate of healthcare-associated MRSA infection and colonization decreased from 1.1 per 1,000 patient-days in the pre-intervention period to 0.36 per 1,000 patient-days in the post-intervention period (P<0.001). The effect of the intervention in association with the percentage of S. aureus isolates susceptible to oxicillin were shown to be statistically significantly associated with the incidence of MRSA infection and colonization (IRR = 0.50, 95% CI = 0.31-0.80 and IRR = 0.004, 95% CI = 0.00003-0.40, respectively). ^ CONCLUSIONS. It can be concluded that aggressively targeting patients at high risk for colonization of MRSA with active surveillance cultures and associated infection control practices as part of a multifaceted, hospital-wide intervention is effective in reducing the incidence of healthcare-associated MRSA.^
Resumo:
Arctic permafrost landscapes are among the most vulnerable and dynamic landscapes globally, but due to their extent and remoteness most of the landscape changes remain unnoticed. In order to detect disturbances in these areas we developed an automated processing chain for the calculation and analysis of robust trends of key land surface indicators based on the full record of available Landsat TM, ETM +, and OLI data. The methodology was applied to the ~ 29,000 km**2 Lena Delta in Northeast Siberia, where robust trend parameters (slope, confidence intervals of the slope, and intercept) were calculated for Tasseled Cap Greenness, Wetness and Brightness, NDVI, and NDWI, and NDMI based on 204 Landsat scenes for the observation period between 1999 and 2014. The resulting datasets revealed regional greening trends within the Lena Delta with several localized hot-spots of change, particularly in the vicinity of the main river channels. With a 30-m spatial resolution various permafrost-thaw related processes and disturbances, such as thermokarst lake expansion and drainage, fluvial erosion, and coastal changes were detected within the Lena Delta region, many of which have not been noticed or described before. Such hotspots of permafrost change exhibit significantly different trend parameters compared to non-disturbed areas. The processed dataset, which is made freely available through the data archive PANGAEA, will be a useful resource for further process specific analysis by researchers and land managers. With the high level of automation and the use of the freely available Landsat archive data, the workflow is scalable and transferrable to other regions, which should enable the comparison of land surface changes in different permafrost affected regions and help to understand and quantify permafrost landscape dynamics.
Resumo:
Monthly measurements of pH, alkalinity and oxygen over two years (February 1998-February 2000) at the Dyfamed site in the central zone of the Ligurian-Provençal Basin of the Mediterranean made it possible to assess the vertical distributions (5-2000 m) and the seasonal variations of these properties. Alkalinity varies linearly with salinity between surface water and the Levantine Intermediate Water (marked by a maximum of temperature and salinity). In deep water, total alkalinity is also correlated linearly to salinity, but the slope of the regression line is 15% less. In surface water, the pH at 25°C varies between 7.91 and 8.06 on the total proton scale depending upon the season. The lowest values are observed in winter, the highest in spring and in summer. These variations are primarily due to biological production. The pH goes through a minimum around 150-200 m and a small maximum below the intermediate water. The total dissolved inorganic carbon content (deduced from pH and alkalinity) is variable in surface water (2205-2310 ?mol/kg) and has a maximum in intermediate water, which is related to the salinity maximum. Normalized total inorganic carbon at a constant salinity is strongly negatively correlated with pH at 25°C. The fugacity of CO2, (fCO2) varies between 320 and 430 ?atm in surface water, according to the season. Below the seasonal thermocline, the maximum fCO2 (about 410 ?atm) is located around 150-200 m. The presence of a minimum of oxygen in the intermediate water of this area has been observed for several years, but our measurements made it possible to specify the relationship between oxygen and salinity in deep water. Data from the intense vertical mixing during the winters of 1999 and 2000 were used to calculate the oxygen quantity exchanged with the atmosphere during these periods. The estimated quantity of oxygen entering the Mediterranean Sea exceeds that deduced from exchange coefficients calculated with the formula of Wanninkhof and McGillis. During the vertical mixing in the 1999 winter, fCO2 in surface water was on average below equilibrium with atmospheric fCO2, thus implying that CO2 was entering the sea. However, on this time scale, even with high exchange coefficients, the estimated CO2 uptake had no significant influence on the inorganic carbon content in the water column.
Resumo:
Spectral absorption coefficients of total particulate matter ap (lambda) were determined using the in vitro filter technique. The present analysis deals with a set of 1166 spectra, determined in various oceanic (case 1) waters, with field chl a concentrations ([chl]) spanning 3 orders of magnitude (0.02-25 mg/m**3). As previously shown [Bricaud et al., 1995, doi:10.1029/95JC00463] for the absorption coefficients of living phytoplankton a phi (lamda), the ap (labda) coefficients also increase nonlinearly with [chl]. The relationships (power laws) that link ap (lambda) and a phi (lambda) to [chl] show striking similarities. Despite large fluctuations, the relative contribution of nonalgal particles to total absorption oscillates around an average value of 25-30% throughout the [chl] range. The spectral dependence of absorption by these nonalgal particles follows an exponential increase toward short wavelengths, with a weakly variable slope (0.011 ± 0.0025/nm). The empirical relationships linking ap (lambda) to ([chl]) can be used in bio-optical models. This parameterization based on in vitro measurements leads to a good agreement with a former modeling of the diffuse attenuation coefficient based on in situ measurements. This agreement is worth noting as independent methods and data sets are compared. It is stressed that for a given ([chl]), the ap (lambda) coefficients show large residual variability around the regression lines (for instance, by a factor of 3 at 440 nm). The consequences of such a variability, when predicting or interpreting the diffuse reflectance of the ocean, are examined, according to whether or not these variations in ap are associated with concomitant variations in particle scattering. In most situations the deviations in ap actually are not compensated by those in particle scattering, so that the amplitude of reflectance is affected by these variations.
Resumo:
We demonstrate that the process of generating smooth transitions Call be viewed as a natural result of the filtering operations implied in the generation of discrete-time series observations from the sampling of data from an underlying continuous time process that has undergone a process of structural change. In order to focus discussion, we utilize the problem of estimating the location of abrupt shifts in some simple time series models. This approach will permit its to address salient issues relating to distortions induced by the inherent aggregation associated with discrete-time sampling of continuous time processes experiencing structural change, We also address the issue of how time irreversible structures may be generated within the smooth transition processes. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Due to the variability and stochastic nature of wind power system, accurate wind power forecasting has an important role in developing reliable and economic power system operation and control strategies. As wind variability is stochastic, Gaussian Process regression has recently been introduced to capture the randomness of wind energy. However, the disadvantages of Gaussian Process regression include its computation complexity and incapability to adapt to time varying time-series systems. A variant Gaussian Process for time series forecasting is introduced in this study to address these issues. This new method is shown to be capable of reducing computational complexity and increasing prediction accuracy. It is further proved that the forecasting result converges as the number of available data approaches innite. Further, a teaching learning based optimization (TLBO) method is used to train the model and to accelerate
the learning rate. The proposed modelling and optimization method is applied to forecast both the wind power generation of Ireland and that from a single wind farm to show the eectiveness of the proposed method.