851 resultados para Ti coating
Resumo:
A study of the K-alpha radiation emitted from Ti foils irradiated with intense, similar to0.2 J, 67 fs, 800 nm laser pulses, scanning a range of intensities (similar to10(15)-10(18) W cm(-2)), is reported. The brightness of single-shot K-alpha line emission from the front of the targets is recorded. The yield from bare titanium (Ti) is compared to that from plastic (parylene-E) coated Ti. It is demonstrated that, for a defocused beam, a thin layer of plastic increases the yield.
Resumo:
By means of the mechanical alloying (MA) method, Al and Ti + Al coatings were deposited on Ti alloy substrates. During the mechano-activation processing, the substrate surface was impacted by a large number of flying balls along with particles of powder. The repeated ball collisions with the substrate resulted in the deposition of powder on its surface. MA technique produced Ti + Al coating with a thickness of 200 µm and Al one with a thickness of 50 µm after 2 h milling at room temperature. The as-synthesized coatings showed structures with high apparent density and free of porosity. The surface morphology of the MA-coatings was very rough. Annealing treatment led to the leveling of this uneven morphology. Annealing at temperatures ranging between 600 °C and 1100 °C gave different aluminide phases on the samples. In the case of Al coating, Al3Ti and Ti3Al compound were observed upon heating up to 1100 °C. In the case of Ti + Al coating, Al3Ti, Al2Ti, TiAl and Ti3Al were formed on the surface.
Resumo:
A novel tubular cell structure for a direct methanol fuel cell (DMFC) is proposed based on a tubular Ti mesh and a Ti mesh anode. A dip coating method has been developed to fabricate the cell. The characterization of the tubular MEA has been analyzed by scanning electron microscopy (SEM), energy dispersive X-ray (EDX), half cell and single cell testing. The tubular DMFC single cell comprises: a Ti mesh, a cathode diffusion layer and catalyst layer, a Nafion recast membrane and a PtRuO/Ti anode. Half cell tests show that the optimum catalyst loading, Ru/(Ru + Pt) atomic ratio and the Nafion loading of a PtRuO/Ti mesh anode are: 4 mg cm, 38% and 0.6 mg cm, respectively. Single cell tests show that the Nafion loading of the recast Nafion membrane and the concentration of the methanol in the electrolyte have a major influence on cell performance. © 2006 Elsevier B.V. All rights reserved.
Resumo:
PtRuO/Ti anodes with a varying Pt:Ru ratio were prepared by thermal deposition of a PtRuO catalyst layer onto a Ti mesh for the direct methanol fuel cell (DMFC). The morphology and structure of the catalyst layers were analyzed by SEM, EDX, and XRD. The catalyst coating layers became porous with increase of the Ru content, and showed oxide and alloy characteristics. The relative activities of the PtRuO/Ti electrodes were assessed and compared using half-cell tests and single DMFC experiments. The results showed that these electrodes were very active for the methanol oxidation and that the optimum Ru surface coverage was ca. 38% for a DMFC operating at 20-60 °C. © 2006 Elsevier B.V. All rights reserved.
Resumo:
PtRu/Ti anodes with varying Pt : Ru ratio were prepared by electrodeposition of a thin PtRu catalyst layer onto Ti mesh for a direct methanol fuel cell (DMFC). The morphology and structure of the catalyst layers were analyzed by SEM, EDX and XRD. The catalyst coating layer shows an alloy character. The relative activities of the PtRu/Ti electrodes were assessed and compared in half cell and single DMFC experiments. The results show that these electrodes are very active for the methanol oxidation and that the optimum Ru surface coverage was ca. 9 at.% for DMFC operating at 20°C and 11 at.% at 60°C. The PtRu/Ti anode shows a performance comparable to that of the conventional carbon-based anode in a DMFC operating with 0.25 M or 0.5 M methanol solution and atmosphere oxygen gas at 90°C. © the Owner Societies 2006.
Resumo:
The Mg-Ni metastable alloys (with amorphous or nanocrystalline structures) are promising candidates for anode application in nickel-metal hydride rechargeable batteries due to its large hydrogen absorbing capacity, low weight, availability, and relative low price. In spite of these interesting features, improvement on the cycle life performance must be achieved to allow its application in commercial products. In the present paper, the effect of mechanical coating of a Mg-50 at.% Ni alloy with Ni and Ni-5 at.% Al on the structure, powder morphology, and electrochemical properties is investigated. The coating additives, Mg-Ni alloy and resulting nanocomposites (i.e., Mg-Ni alloy + additive) were investigated by means of X-ray diffraction and scanning electron microscopy. The Mg-Ni alloy and nanocomposites were submitted to galvanostatic cycles of charge and discharge to evaluate their electrode performances. The mechanical coating with Ni and Ni-5% Al increased the maximum discharge capacity of the Mg-Ni alloy from of 221 to 257 and 273 mA h g(-1), respectively. Improvement on the cycle life performance was also achieved by mechanical coating.
Resumo:
NASCIMENTO,R.M. et al.Interface microstructure of alumina mechanically metallized with Ti brazed to Fe–Ni–Co using different fillers. Materials Science and Engineering A, v.466, n.1/2, p. 195-200, 2007.
Resumo:
Titanium and their alloys have been used for biomedical applications due their excellent mechanical properties, corrosion resistance and biocompatibility. However, they are considered bioinerts materials because when they are inserted into the human body they are cannot form a chemical bond with bone. In several studies, the authors have attempted to modify their characteristic with treatments that changes the material surface. The purpose of this work was to evaluate obtaining of nanoapatite after growing of the nanotubes in surface of Ti-7.5Mo alloy. Alloy was obtained from c.p. titanium and molibdenium by using an arc-melting furnace. Ingots were submitted to heat treatment and they were cold worked by swaging. Nanotubes were processed using anodic oxidation of alloy in electrolyte solution. Surfaces were investigated using scanning electron microscope (SEM), FEG-SEM and thin-film x-ray diffraction. The results indicate that nanoapatite coating could form on surface of Ti-7.5Mo experimental alloy after nanotubes growth.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: Different surface treatments have been developed in attempts to prevent the loosening of abutment screws. The aim of the current study was to compare the effectiveness of titanium alloy screws with tungsten-doped diamond-like carbon (W-DLC) coating and uncoated screws in providing stability to zirconia (ZrO2) ceramic abutments after cyclic loading. Materials and Methods: Twenty prefabricated ZrO2 ceramic abutments on their respective external-hex implants were divided into two groups of equal size according to the type of screw used: uncoated titanium alloy screw (Ti) or titanium alloy screw with W-DLC coating (W-DLC/Ti). The removal torque value (preload) of the abutment screw was measured before and after loading. Cyclic loading between 11 and 211 N was applied at an angle of 30 degrees to the long axis of the implants at a frequency of 15 Hz. A target of 0.5 x 10(6) cycles was defined. Group means were calculated and compared using analysis of variance and the F test (alpha=.05). Results: Before cyclic loading, the preload for Ti screws was significantly higher than that for W-DLC/Ti screws (P=.021). After cyclic loading, there was no significant difference between them (P=.499). Conclusions: Under the studied conditions, it can be concluded that, after cyclic loading, both abutment screws presented a significant reduction in the mean retained preload and similar effectiveness in maintaining preload. INT J ORAL MAXILLOFAC IMPLANTS 2012;27:1061-1067
Resumo:
Ferroelectric SrBi4Ti4O15 thin films were successfully prepared on a Pt(111)/Ti/SiO2/Si(100) substrate for the first time by spin coating, using the polymeric precursor method. X-ray diffraction patterns of the films indicate that they are polycrystalline in nature. Atomic force microscopy (AFM) analyses showed that the surface of these films is smooth, dense and crack-free with low surface roughness (6.4 nm). At room temperature and at a frequency of 1 MHz, the dielectric constant and the dissipation factor were, respectively, 150 and 0.022. The C-V characteristics of perovskite thin film prepared at low temperature show normal ferrolectric behaviour. The remanent polarization and coercive field for the films deposited were 5.4 mu C/cm(2) and 8 5 kV/cm, respectively. All the capacitors showed good polarization fatigue characteristics at least up to 1 x 10(10) bipolar pulse cycles indicating that SrBi4Ti4O15 thin films can be a promising material for use in nonvolatile memories. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Single-phase perovskite structure BaZrxTi1-xO3 (BZT) (0.05less than or equal toxless than or equal to0.25) thin films were deposited on Pt-Ti-SiO2-Si substrates by the spin-coating technique. The structural modifications in the thin films were studied using x-ray diffraction and micro-Raman scattering techniques. Lattice parameters calculated from x-ray data indicate an increase in lattice (a axis) with the increasing content of zirconium in these films. Such Zr substitution also result in variations of the phonon mode wave numbers, especially those of lower wave numbers, for BaZrxTi1-xO3 thin films, corroborate to the structural change caused by the zirconium doping. on the other hand, Raman modes persist above structural phase transition, although all optical modes should be Raman inactive in the cubic phase. The origin of these modes must be interpreted as a function of a local breakdown of the cubic symmetry, which could be a result of some kind of disorder. The BZT thin films exhibited a satisfactory dielectric constant close to 181-138, and low dielectric loss tan delta<0.03 at the frequency of 1 kHz. The leakage current density of the BZT thin films was studied at elevated temperatures and the data obey the Schottky emission model. Through this analysis the Schottky barrier height values 0.68, 1.39, and 1.24 eV were estimated to the BZT5, BZT15, and BZT25 thin films, respectively. (C) 2004 American Institute of Physics.