995 resultados para Thermo-degradation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The search for ideal biomaterials is still on-going for tissue regeneration. In this study, blends of Poly ε-caprolactone (PCL) with Poly l-lactic acid (PLLA), Nalidixic Acid (NA) and Polyethylene glycol (PEG) were prepared. Mechanical and thermal properties of the blends were investigated by tensile and flexural analysis, DSC, TGA, WXRD, MFI, BET, SEM and hot stage optical microscopy. Results showed that the loading of PLLA caused a significant decrease in tensile strength and almost total eradication of the elongation at break of PCL matrix, especially after PEG and NA addition. Increased stiffness was also noted with additional NA, PEG and PLLA, resulting in an increase in the flexural modulus of the blends.
Isothermal degradation indicated that bulk PCL, PLLA and the blends were thermally stable at 200°C for the duration of 2h making extrusion of the blends at this temperature viable. Morphological study showed that increasing the PLLA content and addition of the very low viscosity PEG and powder NA decreased the Melt Flow Indexer and increased the viscosity.
At the higher temperature the PLLA begins to soften and eventually melts allowing for increased flow and, coupling this with, the natural increase in MFI caused by temperature is enhanced further. The PEG and NA addition increased dramatically the pore volume which is important for cell growth and flow transport of nutrients and metabolic waste.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The degradation behaviour of SnO(2)-based varistors (SCNCr) due to current pulses (8/20 mu s) is reported here for the first time in comparison with the ZnO-based commercial varistors (ZnO). Puncturing and/or cracking failures were observed in ZnO-based varistors possessing inferior thermo-mechanical properties in comparison with that found in a SCNCr system free of failures. Both systems presented electric degradation related to the increase in the leakage current and decrease in the electric breakdown field, non-linear coefficient and average value of the potential barrier height. However, it was found that a more severe degradation occurred in the ZnO-based varistors concerning their non-ohmic behaviour, while in the SCNCr system, a strong non-ohmic behaviour remained after the degradation. These results indicate that the degradation in the metal oxide varistors is controlled by a defect diffusion process whose rate depends on the mobility, the concentration of meta-stable defects and the amount of electrically active interfaces. The improved behaviour of the SCNCr system is then inferred to be associated with the higher amount of electrically active interfaces (85%) and to a higher energy necessary to activate the diffusion of the specific defects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oxidative and thermo-mechanical degradation of HDPE was studied during processing in an internal mixer under two conditions: totally and partially filled chambers, which provides lower and higher concentrations of oxygen, respectively. Two types of HDPEs, Phillips and Ziegler-Natta, having different levels of terminal vinyl unsaturations were analyzed. Materials were processed at 160, 200, and 240 degrees C. Standard rheograrns using a partially filled chamber showed that the torque is much more unstable in comparison to a totally filled chamber which provides an environment depleted of oxygen. Carbonyl and transvinylene group concentrations increased, whereas vinyl group concentration decreased with temperature and oxygen availability. Average number of chain scission and branching (n(s)) was calculated from MWD curves and its plotting versus functional groups' concentration showed that chain scission or branching takes place depending upon oxygen content and vinyl groups' consumption. Chain scission and branching distribution function (CSBDF) values showed that longer chains undergo chain scission easier than shorter ones due to their higher probability of entanglements. This yields macroradicals that react with the vinyl terminal unsaturations of other chains producing chain branching. Shorter chains are more mobile, not suffering scission but instead are used for grafting the macroradicals, increasing the molecular weight. Increase in the oxygen concentration, temperature, and vinyl end groups' content facilitates the thermo-mechanical degradation reducing the amount of both, longer chains via chain scission and shorter chains via chain branching, narrowing the polydispersity. Phillips HDPE produces a higher level of chain branching than the Ziegler-Natta's type at the same processing condition. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the results of thermogravimetric analysis (TGA) tests in PVC (1.0; 2.0 mm) and HDPE (0.8; 2.5 mm) geomembranes exposed to weathering and leachate after 30 months. The aim of this paper is the comparison of fresh and exposed samples to assess the degradation process concerning the total loss of mass of geomembranes. The exposure was conducted in accordance with the recommendations of ASTM standards. The TGA tests were carried out according to ASTM D6370 and E2105. Results show, for instance, that for PVC geomembrane the largest reductions of plasticizers occurred for samples exposed to weathering. The loss of plasticizers after the exposure contributed to the decrease of deformation and consequent increase in stiffness. TGA tests shows to be a valuable tool to control the quality of the materials. © 2012 ejge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermal-oxidative degradation behaviours of raw natural rubber (NR) have been investigated by using thermogravimetry analysis in inert and oxidative atmospheres and the plasticity retention index (PRI). The activation energy E a, was calculated using Horowitz-Metzger and Coats-Redfern methods and compared with PRI. The E a values obtained by each method were in good agreement with each other. The June samples are the least stable rubbers among the studied ones, whereas February samples exhibited the highest values of activation energy, therefore in agreement with the PRI behaviour, which indicates that the thermo-oxidative stability of the June samples are the poorest during the thermo-oxidative degradation reaction. Natural rubber is a product of biological origin, and thus these variations in the values of thermal behaviour and PRI might be related to the genetic differences and alterations of climatic conditions that act directly on the synthesis of non-rubber constituents, which are generally reflected in latex and rubber properties. © 2013 Institute of Materials, Minerals and Mining.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The degradation behaviour of SnO(2)-based varistors (SCNCr) due to current pulses (8/20 mu s) is reported here for the first time in comparison with the ZnO-based commercial varistors (ZnO). Puncturing and/or cracking failures were observed in ZnO-based varistors possessing inferior thermo-mechanical properties in comparison with that found in a SCNCr system free of failures. Both systems presented electric degradation related to the increase in the leakage current and decrease in the electric breakdown field, non-linear coefficient and average value of the potential barrier height. However, it was found that a more severe degradation occurred in the ZnO-based varistors concerning their non-ohmic behaviour, while in the SCNCr system, a strong non-ohmic behaviour remained after the degradation. These results indicate that the degradation in the metal oxide varistors is controlled by a defect diffusion process whose rate depends on the mobility, the concentration of meta-stable defects and the amount of electrically active interfaces. The improved behaviour of the SCNCr system is then inferred to be associated with the higher amount of electrically active interfaces (85%) and to a higher energy necessary to activate the diffusion of the specific defects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CPV receivers are made of materials with very different lineal expansion coefficients. Strong variations in DNI due to the passage of clouds can cause sudden temperature changes that creates mechanical stress. For common solder and metal filled polymers the plastic limit could be reached causing substantial fatigue. The best forecast of receiver reliability is therefore achieved by applying an intermittent light source with nominal irradiance level and a number of cycles equal to the expected cloud passages for a given site. The UPM has developed specialized equipment, dubbed the LYSS (Light cYcling Stressing Source), for carrying out such experiments. The small thermal capacity of receivers allows simulating more than 25000 cycles per week. The number of deep transients expected for Madrid in 30 years operation, based on available data, is about 45000. We are currently using the system to cycle a ?Ge/Ag Epoxy/aluminum? receiver, which shows no degradation after 20000 cycles. The equipment can cast up to 200 and 70 W/cm2 on 0.1 and 1 cm2 cells, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundamental analytical pyrolysis studies of biomass from Polar seaweeds, which exhibit a different biomass composition than terrestrial and micro-algae biomass were performed via thermogravimetric analysis (TGA) and pyrolysis-gas chromatography/mass-spectrometry (Py-GC/MS). The main reason for this study is the adaptation of these species to very harsh environments making them an interesting source for thermo-chemical processing for bioenergy generation and production of biochemicals via intermediate pyrolysis. Several macroalgal species from the Arctic region Kongsfjorden, Spitsbergen/Norway (Prasiola crispa, Monostroma arcticum, Polysiphonia arctica, Devaleraea ramentacea, Odonthalia dentata, Phycodrys rubens, Sphacelaria plumosa) and from the Antarctic peninsula, Potter Cove King George Island (Gigartina skottsbergii, Plocamium cartilagineum, Myriogramme manginii, Hymencladiopsis crustigena, Kallymenia antarctica) were investigated under intermediate pyrolysis conditions. TGA of the Polar seaweeds revealed three stages of degradation representing dehydration, devolatilization and decomposition of carbonaceous solids. The maximum degradation temperatures Prasiola crispa were observed within the range of 220-320 C and are lower than typically obtained by terrestrial biomass, due to divergent polysaccharide compositions. Biochar residues accounted for 33-46% and ash contents of 27-45% were obtained. Identification of volatile products by Py-GC/MS revealed a complexity of generated chemical compounds and significant differences between the species. A widespread occurrence of aromatics (toluene, styrene, phenol and 4-methylphenol), acids (acetic acid, benzoic acid alkyl ester derivatives, 2-propenoic acid esters and octadecanoic acid octyl esters) in pyrolysates was detected. Ubiquitous furan-derived products included furfural and 5-methyl-2-furaldehyde. As a pyran-derived compound maltol was obtained by one red algal species (P. rubens) and the monosaccharide d-allose was detected in pyrolysates in one green algal (P. crispa). Further unique chemicals detected were dianhydromannitol from brown algae and isosorbide from green algae biomass. In contrast, the anhydrosugar levoglucosan and the triterpene squalene was detected in a large number of pyrolysates analysed. © 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of the comonomer content in a series of metallocene-based ethylene-1-octene copolymers (m-LLDPE) on thermo-mechanical, rheological, and thermo-oxidative behaviours during melt processing were examined using a range of characterisation techniques. The amount of branching was calculated from 13C NMR and studies using differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) were employed to determine the effect of short chain branching (SCB, comonomer content) on thermal and mechanical characteristics of the polymer. The effect of melt processing at different temperatures on the thermo-oxidative behaviour of the polymers was investigated by examining the changes in rheological properties, using both melt flow and capillary rheometry, and the evolution of oxidation products during processing using infrared spectroscopy. The results show that the comonomer content and catalyst type greatly affect thermal, mechanical and oxidative behaviour of the polymers. For the metallocene polymer series, it was shown from both DSC and DMA that (i) crystallinity and melting temperatures decreased linearly with comonomer content, (ii) the intensity of the ß-transition increased, and (iii) the position of the tan δmax peak corresponding to the a-transition shifted to lower temperatures, with higher comonomer content. In contrast, a corresponding Ziegler polymer containing the same level of SCB as in one of the m-LLDPE polymers, showed different characteristics due to its more heterogeneous nature: higher elongational viscosity, and a double melting peak with broader intensity that occurred at higher temperature (from DSC endotherm) indicating a much broader short chain branch distribution. The thermo-oxidative behaviour of the polymers after melt processing was similarly influenced by the comonomer content. Rheological characteristics and changes in concentrations of carbonyl and the different unsaturated groups, particularly vinyl, vinylidene and trans-vinylene, during processing of m-LLDPE polymers, showed that polymers with lower levels of SCB gave rise to predominantly crosslinking reactions at all processing temperatures. By contrast, chain scission reactions at higher processing temperatures became more favoured in the higher comonomer-containing polymers. Compared to its metallocene analogue, the Ziegler polymer showed a much higher degree of crosslinking at all temperatures because of the high levels of vinyl unsaturation initially present.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two antioxidant modified layered double hydroxides (AO-LDHs) were successfully prepared by theintercalation of 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid (IrganoxCOOH) and 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) in the layered structure of LDH. It was foundthat by anchoring the phenolic moieties to the LDH layers the antioxidant power is retained in the caseof Trolox, and even amplified in the case of IrganoxCOOH. A small amount of the two AO-LDHs wasincorporated into poly(lactic acid), PLA, by solution mixing and melt extrusion. The thermo-oxidativestability of the composites was compared with that of the neat PLA and PLA containing free AOs. SECanalysis indicates that, after a controlled period of ageing, both the AO-LDHs protect the PLA fromchain scission. The oxidation induction time (OIT, DSC) at 230 °C shows also the beneficial effects ofthe presence of the functional filler in the polymer matrix. Further, results from a preliminary migrationtest suggest that the AO species have a low tendency to migrate away from the AO-LDHs embedded inthe polymer matrix thus keeping the AO protected inside the nanofiller layers thereby remaining activefor a longer time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deep fat frying process is one of the widely followed cooking practices throughout the world. Cooking oils serve as a medium for frying food for transferring heat and makes fried food tasty and palatable. Frying process is a most complex process involving numerous physicochemical changes which are complicated to understand. Frying leads to thermal degradation of oil through thermo-oxidation, hydrolysis, and polymerization. Hydrolysis results in formation of free fatty acids whereas oxidation process produces hydroperoxides and small molecular carbonyl compounds. This whole process leads to the formation of polar compounds and degradation of antioxidants that further degrades frying oil. Eventually, through mass transfer process these degradation products accumulate into fried food and reduce the nutritional quality of both oil and food. Thus, the frying process is of research interest calls for detailed systematic study which is chosen for the present study. The primary objective of this study is to understand the mechanism of degradation and characterization ofdegraded products which helps in arriving at the limits for frying oil utilization in terms of number of frying cycles. The mechanistic studies and the knowledge on the degraded products help to understand the way to retard the deterioration of oil for stability and enhancement of frying cycles. The study also explores the formation of the predominant polar compounds and their structural elucidation through mass spectrometry. Oxidation of oil is another important factor that ignites the degradation phenomena. One of the best ways to increase thermal stability of any oil is addition of potent antioxidants. But, most of the natural and synthetic antioxidants are unstable and ineffective at frying temperatures. Therefore, it is necessary to screen alternative antioxidants for their activity in the refined oils which are devoid of any added antioxidants. In this context, this study discussed the efficacy of several natural and synthetic antioxidants to retard the formation of polar compounds and thermooxidation during prolonged frying conditions. Similarly, the advantage of blending of two different oils to improve the thermal stability was explored. The present study brings out the total picture on the type of degradation products formed during frying and the ways of retarding the determination to improve upon the stability of the oil and enhancement of frying cycles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly(methyl methacrylate)/poly(styrene-co-acrylonitrile) (PMMA/SAN) blends, with varying concentrations, were prepared by melt-mixing technique. The miscibility is ensured by fixing the acrylonitrile (AN) content of styrene acrylonitrile (SAN) as 25% by weight. The blends were transparent as well. The Fourier transform infrared spectroscopic (FTIR) studies did not reveal any specific interactions, supporting the well accepted 'copolymer repulsion effect' as the driving mechanism for miscibility. Addition of SAN increased the stability of PMMA towards ultraviolet (UV) radiations and thermal degradation. Incorporation of even 0.05% by weight of multi-walled carbon nanotubes (MWCNTs) significantly improved the UV absorbance and thermal stability. Moreover, the composites exhibited good strength and modulus. However, at higher concentrations of MWCNTs (0.5 and 1% by weight) the thermo-mechanical properties experienced deterioration, mainly due to the agglomeration of MWCNTs. It was observed that composites with 0.05% by weight of finely dispersed and well distributed MWCNTs provided excellent protection in most extreme climatic conditions. Thus, PMMA/SAN/MWCNTs composites can act as excellent light screens and may be useful, as cost-effective UV absorbers, in the outdoor applications.