995 resultados para Thermal-injury
Resumo:
Hypersensitivity to a variety of sensory Stimuli is a feature of persistent whiplash associated disorders (WAD). However, little is known about sensory disturbances from the time Of injury until transition to either recovery or symptom persistence. Quantitative sensory testing (pressure and thermal pain thresholds, the brachial plexus provocation test), the sympathetic vasoconstrictor reflex and psychological distress (GHQ-28) were prospectively measured in 76 whiplash Subjects within 1 month of injury and then 2, 3 and 6 months post-injury. Subjects were classified at 6 months post-injury using scores on the Neck Disability Index: recovered (30). Sensory and sympathetic nervous system tests were also measured in 20 control subjects. All whiplash groups demonstrated local mechanical hyperalgesia in the cervica spine at 1 month post-injury. This hyperalgesia persisted in those with moderate/severe symptoms at 6 months but resolved by 2 months in those who had recovered or reported persistent mild symptoms. Only those with persistent moderate/severe symptoms at 6 months demonstrated generalised hypersensitivity to all sensory tests. These changes Occurred within 1 month of injury and remained Unchanged throughout the Study period. Whilst no significant group differences were evident for the sympathetic vasoconstrictor response, the moderate/severe group showed a tendency for diminished sympathetic reactivity. GHQ-28 scores of the moderate/severe group were higher than those of the other two groups. The differences in GHQ-28 did not impact on any of the sensory measures. These findings suggest that those with persistent moderate/severe symptoms at 6 months display, soon after injury, generalised hypersensitivity suggestive of changes in central pain processing mechanisms. This phenomenon did not Occur in those who recover or those with persistent mild symptoms. (C) 2003 International Association for the Study of Pain. Published by Elsevier Science B.V. All rights reserved.
Resumo:
Peroperative hypothermia is recognized to increase mortality and morbidity, and the paediatric anaesthetist faces specific challenges resulting from the increased body surface to volume ratio, particularly in smaller children. We describe three children who were consecutive patients on one operating list and sustained severe thermal injuries. These were due to a malfunctioning electrical heating mat, despite appropriate use and monitoring by the attending anaesthetist. It is rare for thermal warming devices to cause injury. We review the use of heating mats, and suggest modifications in their manufacture which may minimize the risks associated with heating devices.
Resumo:
Predictors of outcome following whiplash injury are limited to socio-demographic and symptomatic factors, which are not readily amenable to secondary and tertiary intervention. This prospective study investigated the predictive capacity of early measures of physical and psychological impairment on pain and disability 6 months following whiplash injury. Motor function (ROM; kinaesthetic sense; activity of the superficial neck flexors (EMG) during cranio-cervical flexion), quantitative sensory testing (pressure, thermal pain thresholds, brachial plexus provocation test), sympathetic vasoconstrictor responses and psychological distress (GHQ-28, TSK, IES) were measured in 76 acute whiplash participants. The outcome measure was Neck Disability Index scores at 6 months. Stepwise regression analysis was used to predict the final NDI score. Logistic regression analyses predicted membership to one of the three groups based on final NDI scores (< 8 recovered, 10-28 mild pain and disability, > 30 moderate/severe pain and disability). Higher initial NDI score (1.007-1.12), older age (1.03-1.23), cold hyperalgesia (1.05-1.58), and acute post-traumatic stress (1.03-1.2) predicted membership to the moderate/severe group. Additional variables associated with higher NDI scores at 6 months on stepwise regression analysis were: ROM loss and diminished sympathetic reactivity. Higher initial NDI score (1.03-1.28), greater psychological distress (GHQ-28) (1.04-1.28) and decreased ROM (1.03-1.25) predicted subjects with persistent milder symptoms from those who fully recovered. These results demonstrate that both physical and psychological factors play a role in recovery or non-recovery from whiplash injury. This may assist in the development of more relevant treatment methods for acute whiplash. (c) 2004 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Resumo:
Higher initial levels of pain and disability, older age, cold hyperalgesia, impaired sympathetic vasoconstriction and moderate post-traumatic stress symptoms have been shown to be associated with poor outcome 6 months following whiplash injury. This study prospectively investigated the predictive capacity of these variables at a long-term follow-up. Sixty-five of an initial cohort of 76 acutely injured whiplash participants were followed to 2-3 years post-accident. Motor function (ROM; kinaesthetic sense; activity of the superficial neck flexors (EMG) during cranio-cervical flexion), quantitative sensory testing (pressure, thermal pain thresholds and brachial plexus provocation test), sympathetic vasoconstrictor responses and psychological distress (GHQ-28, TSK and IES) were measured. The outcome measure was Neck Disability Index (NDI) scores. Participants with ongoing moderate/severe symptoms at 2-3 years continued to manifest decreased ROM, increased EMG during cranio-cervical flexion, sensory hypersensitivity and elevated levels of psychological distress when compared to recovered participants and those with milder symptoms. The latter two groups showed only persistent deficits in cervical muscle recruitment patterns. Higher initial NDI scores (OR 1.00-1.1), older age (OR 1.00-1.13), cold hyperalgesia (OR 1.1-1.13) and post-traumatic stress symptoms (OR 1.03-1.2) remained significant predictors of poor outcome at long-term follow-up (r(2) = 0.56). The robustness of these physical and psychological factors suggests that their assessment in the acute stage following whiplash injury will be important. (c) 2006 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Resumo:
Bone marrow-derived mesenchymal stem cells (BMSC) modulate inflammatory/immune responses and promote motor functional recovery after spinal cord injury (SCI). However, the effects of BMSC transplantation on central neuropathic pain and neuronal hyperexcitability after SCI remain elusive. This is of importance because BMSC-based therapies have been proposed for clinical treatment. We investigated the effects of BMSC transplantation on pain hypersensitivity in green fluorescent protein (GFP)-positive bone marrow-chimeric mice subjected to a contusion SCI, and the mechanisms of such effects. BMSC transplantation at day 3 post-SCI improved motor function and relieved SCI-induced hypersensitivities to mechanical and thermal stimulation. The pain improvements were mediated by suppression of protein kinase C-γ and phosphocyclic AMP response element binding protein expression in dorsal horn neurons. BMSC transplants significantly reduced levels of p-p38 mitogen-activated protein kinase and extracellular signal-regulated kinase (p-ERK1/2) in both hematogenous macrophages and resident microglia and significantly reduced the infiltration of CD11b and GFP double-positive hematogenous macrophages without decreasing the CD11b-positive and GFP-negative activated spinal-microglia population. BMSC transplants prevented hematogenous macrophages recruitment by restoration of the blood-spinal cord barrier (BSCB), which was associated with decreased levels of (a) inflammatory cytokines (tumor necrosis factor-α, interleukin-6); (b) mediators of early secondary vascular pathogenesis (matrix metallopeptidase 9); (c) macrophage recruiting factors (CCL2, CCL5, and CXCL10), but increased levels of a microglial stimulating factor (granulocyte-macrophage colony-stimulating factor). These findings support the use of BMSC transplants for SCI treatment. Furthermore, they suggest that BMSC reduce neuropathic pain through a variety of related mechanisms that include neuronal sparing and restoration of the disturbed BSCB, mediated through modulation of the activity of spinal-resident microglia and the activity and recruitment of hematogenous macrophages.
Resumo:
Raman spectroscopy of formamide-intercalated kaolinites treated using controlled-rate thermal analysis technology (CRTA), allowing the separation of adsorbed formamide from intercalated formamide in formamide-intercalated kaolinites, is reported. The Raman spectra of the CRTA-treated formamide-intercalated kaolinites are significantly different from those of the intercalated kaolinites, which display a combination of both intercalated and adsorbed formamide. An intense band is observed at 3629 cm-1, attributed to the inner surface hydroxyls hydrogen bonded to the formamide. Broad bands are observed at 3600 and 3639 cm-1, assigned to the inner surface hydroxyls, which are hydrogen bonded to the adsorbed water molecules. The hydroxyl-stretching band of the inner hydroxyl is observed at 3621 cm-1 in the Raman spectra of the CRTA-treated formamide-intercalated kaolinites. The results of thermal analysis show that the amount of intercalated formamide between the kaolinite layers is independent of the presence of water. Significant differences are observed in the CO stretching region between the adsorbed and intercalated formamide.
Resumo:
The morphological and chemical changes occurring during the thermal decomposition of weddelite, CaC2O4·2H2O, have been followed in real time in a heating stage attached to an Environmental Scanning Electron Microscope operating at a pressure of 2 Torr, with a heating rate of 10 °C/min and an equilibration time of approximately 10 min. The dehydration step around 120 °C and the loss of CO around 425 °C do not involve changes in morphology, but changes in the composition were observed. The final reaction of CaCO3 to CaO while evolving CO2 around 600 °C involved the formation of chains of very small oxide particles pseudomorphic to the original oxalate crystals. The change in chemical composition could only be observed after cooling the sample to 350 °C because of the effects of thermal radiation.
Resumo:
The thermal stability and thermal decomposition pathways for synthetic iowaite have been determined using thermogravimetry in conjunction with evolved gas mass spectrometry. Chemical analysis showed the formula of the synthesised iowaite to be Mg6.27Fe1.73(Cl)1.07(OH)16(CO3)0.336.1H2O and X-ray diffraction confirms the layered structure. Dehydration of the iowaite occurred at 35 and 79°C. Dehydroxylation occurred at 254 and 291°C. Both steps were associated with the loss of CO2. Hydrogen chloride gas was evolved in two steps at 368 and 434°C. The products of the thermal decomposition were MgO and a spinel MgFe2O4. Experimentally it was found to be difficult to eliminate CO2 from inclusion in the interlayer during the synthesis of the iowaite compound and in this way the synthesised iowaite resembled the natural mineral.
Resumo:
Synthetic Fe—Mn alkoxide of glycerol samples are submitted to controlled heating conditions and examined by IR absorption spectroscopy. On the other hand, the same sample is studied by infrared emission spectroscopy (IRES), upon heating in situ from 100 to 600°C. The spectral techniques employed in this contribution, especially IRES, show that as a result of the thermal treatments ferromagnetic oxides (manganese ferrite) are formed between 350 and 400°C. Some further spectral changes are seen at higher temperatures.
Resumo:
The thermal behaviour of halloysite fully expanded with hydrazine-hydrate has been investigated in nitrogen atmosphere under dynamic heating and at a constant, pre-set decomposition rate of 0.15 mg min-1. Under controlled-rate thermal analysis (CRTA) conditions it was possible to resolve the closely overlapping decomposition stages and to distinguish between adsorbed and bonded reagent. Three types of bonded reagent could be identified. The loosely bonded reagent amounting to 0.20 mol hydrazine-hydrate per mol inner surface hydroxyl is connected to the internal and external surfaces of the expanded mineral and is present as a space filler between the sheets of the delaminated mineral. The strongly bonded (intercalated) hydrazine-hydrate is connected to the kaolinite inner surface OH groups by the formation of hydrogen bonds. Based on the thermoanalytical results two different types of bonded reagent could be distinguished in the complex. Type 1 reagent (approx. 0.06 mol hydrazine-hydrate/mol inner surface OH) is liberated between 77 and 103°C. Type 2 reagent is lost between 103 and 227°C, corresponding to a quantity of 0.36 mol hydrazine/mol inner surface OH. When heating the complex to 77°C under CRTA conditions a new reflection appears in the XRD pattern with a d-value of 9.6 Å, in addition to the 10.2 Ĺ reflection. This new reflection disappears in contact with moist air and the complex re-expands to the original d-value of 10.2 Å in a few h. The appearance of the 9.6 Å reflection is interpreted as the expansion of kaolinite with hydrazine alone, while the 10.2 Å one is due to expansion with hydrazine-hydrate. FTIR (DRIFT) spectroscopic results showed that the treated mineral after intercalation/deintercalation and heat treatment to 300°C is slightly more ordered than the original (untreated) clay.