983 resultados para Texture classification


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The identification of tree species is a key step for sustainable management plans of forest resources, as well as for several other applications that are based on such surveys. However, the present available techniques are dependent on the presence of tree structures, such as flowers, fruits, and leaves, limiting the identification process to certain periods of the year Therefore, this article introduces a study on the application of statistical parameters for texture classification of tree trunk images. For that, 540 samples from five Brazilian native deciduous species were acquired and measures of entropy, uniformity, smoothness, asymmetry (third moment), mean, and standard deviation were obtained from the presented textures. Using a decision tree, a biometric species identification system was constructed and resulted to a 0.84 average precision rate for species classification with 0.83accuracy and 0.79 agreement. Thus, it can be considered that the use of texture presented in trunk images can represent an important advance in tree identification, since the limitations of the current techniques can be overcome.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Color texture classification is an important step in image segmentation and recognition. The color information is especially important in textures of natural scenes, such as leaves surfaces, terrains models, etc. In this paper, we propose a novel approach based on the fractal dimension for color texture analysis. The proposed approach investigates the complexity in R, G and B color channels to characterize a texture sample. We also propose to study all channels in combination, taking into consideration the correlations between them. Both these approaches use the volumetric version of the Bouligand-Minkowski Fractal Dimension method. The results show a advantage of the proposed method over other color texture analysis methods. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Texture image analysis is an important field of investigation that has attracted the attention from computer vision community in the last decades. In this paper, a novel approach for texture image analysis is proposed by using a combination of graph theory and partially self-avoiding deterministic walks. From the image, we build a regular graph where each vertex represents a pixel and it is connected to neighboring pixels (pixels whose spatial distance is less than a given radius). Transformations on the regular graph are applied to emphasize different image features. To characterize the transformed graphs, partially self-avoiding deterministic walks are performed to compose the feature vector. Experimental results on three databases indicate that the proposed method significantly improves correct classification rate compared to the state-of-the-art, e.g. from 89.37% (original tourist walk) to 94.32% on the Brodatz database, from 84.86% (Gabor filter) to 85.07% on the Vistex database and from 92.60% (original tourist walk) to 98.00% on the plant leaves database. In view of these results, it is expected that this method could provide good results in other applications such as texture synthesis and texture segmentation. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In computer vision, training a model that performs classification effectively is highly dependent on the extracted features, and the number of training instances. Conventionally, feature detection and extraction are performed by a domain-expert who, in many cases, is expensive to employ and hard to find. Therefore, image descriptors have emerged to automate these tasks. However, designing an image descriptor still requires domain-expert intervention. Moreover, the majority of machine learning algorithms require a large number of training examples to perform well. However, labelled data is not always available or easy to acquire, and dealing with a large dataset can dramatically slow down the training process. In this paper, we propose a novel Genetic Programming based method that automatically synthesises a descriptor using only two training instances per class. The proposed method combines arithmetic operators to evolve a model that takes an image and generates a feature vector. The performance of the proposed method is assessed using six datasets for texture classification with different degrees of rotation, and is compared with seven domain-expert designed descriptors. The results show that the proposed method is robust to rotation, and has significantly outperformed, or achieved a comparable performance to, the baseline methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent advances in computer vision and machine learning suggest that a wide range of problems can be addressed more appropriately by considering non-Euclidean geometry. In this paper we explore sparse dictionary learning over the space of linear subspaces, which form Riemannian structures known as Grassmann manifolds. To this end, we propose to embed Grassmann manifolds into the space of symmetric matrices by an isometric mapping, which enables us to devise a closed-form solution for updating a Grassmann dictionary, atom by atom. Furthermore, to handle non-linearity in data, we propose a kernelised version of the dictionary learning algorithm. Experiments on several classification tasks (face recognition, action recognition, dynamic texture classification) show that the proposed approach achieves considerable improvements in discrimination accuracy, in comparison to state-of-the-art methods such as kernelised Affine Hull Method and graph-embedding Grassmann discriminant analysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

State-of-the-art image-set matching techniques typically implicitly model each image-set with a Gaussian distribution. Here, we propose to go beyond these representations and model image-sets as probability distribution functions (PDFs) using kernel density estimators. To compare and match image-sets, we exploit Csiszar´ f-divergences, which bear strong connections to the geodesic distance defined on the space of PDFs, i.e., the statistical manifold. Furthermore, we introduce valid positive definite kernels on the statistical manifold, which let us make use of more powerful classification schemes to match image-sets. Finally, we introduce a supervised dimensionality reduction technique that learns a latent space where f-divergences reflect the class labels of the data. Our experiments on diverse problems, such as video-based face recognition and dynamic texture classification, evidence the benefits of our approach over the state-of-the-art image-set matching methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Extraction of text areas from the document images with complex content and layout is one of the challenging tasks. Few texture based techniques have already been proposed for extraction of such text blocks. Most of such techniques are greedy for computation time and hence are far from being realizable for real time implementation. In this work, we propose a modification to two of the existing texture based techniques to reduce the computation. This is accomplished with Harris corner detectors. The efficiency of these two textures based algorithms, one based on Gabor filters and other on log-polar wavelet signature, are compared. A combination of Gabor feature based texture classification performed on a smaller set of Harris corner detected points is observed to deliver the accuracy and efficiency.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cette étude vise à tester la pertinence des images RSO - de moyenne et de haute résolution - à la caractérisation des types d’occupation du sol en milieu urbain. Elle s’est basée sur des approches texturales à partir des statistiques de deuxième ordre. Plus spécifiquement, on recherche les paramètres de texture les plus pertinents pour discriminer les objets urbains. Il a été utilisé à cet égard des images Radarsat-1 en mode fin en polarisation HH et Radarsat-2 en mode fin en double et quadruple polarisation et en mode ultrafin en polarisation HH. Les occupations du sol recherchées étaient le bâti dense, le bâti de densité moyenne, le bâti de densité faible, le bâti industriel et institutionnel, la végétation de faible densité, la végétation dense et l’eau. Les neuf paramètres de textures analysés ont été regroupés, en familles selon leur définition mathématique. Les paramètres de ressemblance/dissemblance regroupent l’Homogénéité, le Contraste, la Similarité et la Dissimilarité. Les paramètres de désordre sont l’Entropie et le Deuxième Moment Angulaire. L’Écart-Type et la Corrélation sont des paramètres de dispersion et la Moyenne est une famille à part. Il ressort des expériences que certaines combinaisons de paramètres de texture provenant de familles différentes utilisés dans les classifications donnent de très bons résultants alors que d’autres associations de paramètres de texture de définition mathématiques proches génèrent de moins bons résultats. Par ailleurs on constate que si l’utilisation de plusieurs paramètres de texture améliore les classifications, la performance de celle-ci plafonne à partir de trois paramètres. Malgré la bonne performance de cette approche basée sur la complémentarité des paramètres de texture, des erreurs systématiques dues aux effets cardinaux subsistent sur les classifications. Pour pallier à ce problème, il a été développé un modèle de compensation radiométrique basé sur la section efficace radar (SER). Une simulation radar à partir du modèle numérique de surface du milieu a permis d'extraire les zones de rétrodiffusion des bâtis et d'analyser les rétrodiffusions correspondantes. Une règle de compensation des effets cardinaux fondée uniquement sur les réponses des objets en fonction de leur orientation par rapport au plan d'illumination par le faisceau du radar a été mise au point. Des applications de cet algorithme sur des images RADARSAT-1 et RADARSAT-2 en polarisations HH, HV, VH, et VV ont permis de réaliser de considérables gains et d’éliminer l’essentiel des erreurs de classification dues aux effets cardinaux.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Texture is one of the most important visual attributes used in image analysis. It is used in many content-based image retrieval systems, where it allows the identification of a larger number of images from distinct origins. This paper presents a novel approach for image analysis and retrieval based on complexity analysis. The approach consists of a texture segmentation step, performed by complexity analysis through BoxCounting fractal dimension, followed by the estimation of complexity of each computed region by multiscale fractal dimension. Experiments have been performed with MRI database in both pattern recognition and image retrieval contexts. Results show the accuracy of the method and also indicate how the performance changes as the texture segmentation process is altered.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Texture is an important visual attribute used to describe the pixel organization in an image. As well as it being easily identified by humans, its analysis process demands a high level of sophistication and computer complexity. This paper presents a novel approach for texture analysis, based on analyzing the complexity of the surface generated from a texture, in order to describe and characterize it. The proposed method produces a texture signature which is able to efficiently characterize different texture classes. The paper also illustrates a novel method performance on an experiment using texture images of leaves. Leaf identification is a difficult and complex task due to the nature of plants, which presents a huge pattern variation. The high classification rate yielded shows the potential of the method, improving on traditional texture techniques, such as Gabor filters and Fourier analysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This article presents a novel method of plant classification using Gabor wavelet filters to extract texture filters in a foliar surface. The aim of this promising method is to add to the results obtained by other leaf attributes (such as shape, contour, color, among others), increasing, therefore, the percentage of classification of plant species. To corroborate the efficiency of the technique, an experiment using 20 species from Brazilian flora was done and discussed. The results are also compared with texture Fourier descriptors and cooccurrence matrices. (C) 2009 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 19, 236-243, 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ima.20201

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a new framework for generating triangular meshes from textured color images. The proposed framework combines a texture classification technique, called W-operator, with Imesh, a method originally conceived to generate simplicial meshes from gray scale images. An extension of W-operators to handle textured color images is proposed, which employs a combination of RGB and HSV channels and Sequential Floating Forward Search guided by mean conditional entropy criterion to extract features from the training data. The W-operator is built into the local error estimation used by Imesh to choose the mesh vertices. Furthermore, the W-operator also enables to assign a label to the triangles during the mesh construction, thus allowing to obtain a segmented mesh at the end of the process. The presented results show that the combination of W-operators with Imesh gives rise to a texture classification-based triangle mesh generation framework that outperforms pixel based methods. Crown Copyright (C) 2009 Published by Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

[EN]In this work local binary patterns based focus measures are presented. Local binary patterns (LBP) have been introduced in computer vision tasks like texture classification or face recognition. In applications where recognition is based on LBP, a computational saving can be achieved with the use of LBP in the focus measures. The behavior of the proposed measures is studied to test if they fulfill the properties of the focus measures and then a comparison with some well know focus measures is carried out in different scenarios.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A quantitative study of late Cenozoic silicoflagellates from the northwestern Pacific sites of Deep Sea Drilling Project Leg 86 shows a relative paleotemperature (Ts) gradient with lowest values (Ts = 30) in the north. Some new ecostratigraphic relations for the region are indicated, such as the last common occurrence of Dictyocha brevispina at 2.6 - 3.0 m.y. ago during a cool interval. Elements of North Pacific and low-latitude biostratigraphic zonations can be identified, but the mixing of cool- and warm-indicator taxa prompted the definition of the new Miocene Mesocena hexalitha Subzone and Pliocene Distephanus jimlingii Subzone. Scanning-electron microscope study of Leg 86 silicoflagellates was done to determine whether various types of skeletal surface texture are temperature dependent. To conduct the study we organized a new surface-texture descriptive code, which characterizes the apical structure/basal ring/spine sequence using new definitions of the terms crenulate (C), linear (L), nodular (N), reticulate (R), and smooth (S). One new silicoflagellate genus, Caryocha Bukry et Monechi, n. gen., is described and several new combinations are made.