37 resultados para Tapoatafa Marsupialia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rock-wallaby genus Petrogale comprises a group of habitat-specialist macropodids endemic to Australia. Their restriction to rocky outcrops, with infrequent interpopulation dispersal, has been suggested as the cause of their recent and rapid diversification. Molecular phylogenetic relationships within and among species of Petrogale were analysed using mitochondrial (cytochrome oxidase c subunit 1, cytochrome b. NADH dehydrogenase subunit 2) and nuclear (omega-globin intron, breast and ovarian cancer susceptibility gene) sequence data with representatives that encompassed the morphological and chromosomal variation within the genus, including for the first time both Petrogale concinna and Petrogale purpureicollis. Four distinct lineages were identified, (1) the brachyotis group, (2) Petrogale persephone, (3) Petrogale xanthopus and (4) the lateralis-penicillata group. Three of these lineages include taxa with the ancestral karyotype (2n = 22). Paraphyletic relationships within the brachyotis group indicate the need for a focused phylogeographic study. There was support for P. purpureicollis being reinstated as a full species and P. concinna being placed within Petrogale rather than in the monotypic genus Peradorcas. Bayesian analyses of divergence times suggest that episodes of diversification commenced in the late Miocene-Pliocene and continued throughout the Pleistocene. Ancestral state reconstructions suggest that Petrogale originated in a mesic environment and dispersed into more arid environments, events that correlate with the timing of radiations in other arid zone vertebrate taxa across Australia. Crown Copyright (C) 2011 Published by Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At head of title: Junta para Ampliación de Estudios é Investigaciones Científicas./ Museo Nacional de Ciencias Naturales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper evaluates the systematic status of the Antechinus populations of northern New South Wales and southern Queensland, using a combined morphological and molecular (allozymes and mitochondrial DNA) approach. Analysis of the d-loop section of the mitochondrial DNA control region revealed two highly supported clades within A. stuartii sensu lato that were sympatric in the Border Ranges of northern New South Wales. However, genetic distances between these clades were small ( approximately 3%), indicating that time of divergence was probably relatively recent. Allozyme electrophoresis also showed very small differences between clades/ species. Analyses of cranial and dental characters showed that the members of each of these clades differed morphologically and that the clades corresponded to A. stuartii and the recently described A. subtropicus. The combined results support the species status of A. stuartii and A. subtropicus, and suggest that speciation was likely a result of a recent vicariant event.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe a new species of dasyurid marsupial within the genus Antechinus that was previously known as a northern outlier of Dusky Antechinus (A. swainsonii). The Black-tailed Antechinus, Antechinus arktos sp. nov., is known only from areas of high altitude and high rainfall on the Tweed Volcano caldera of far south-east Queensland and north-east New South Wales, Australia. Antechinus arktos formerly sheltered under the taxonomic umbrella of A. swainsonii mimetes, the widespread mainland form of Dusky Antechinus. With the benefit of genetic hindsight, some striking morphological differences are herein resolved: A. s. mimetes is more uniformly deep brown-black to grizzled grey-brown from head to rump, with brownish (clove brown—raw umber) hair on the upper surface of the hindfoot and tail, whereas A. arktos is more vibrantly coloured, with a marked change from greyish-brown head to orange-brown rump, fuscous black on the upper surface of the hindfoot and dense, short fur on the evenly black tail. Further, A. arktos has marked orange-brown fur on the upper and lower eyelid, cheek and in front of the ear and very long guard hairs all over the body; these characters are more subtle in A. s. mimetes. There are striking genetic differences between the two species: at mtDNA, A. s. mimetes from north-east New South Wales is 10% divergent to A. arktos from its type locality at Springbrook NP, Queensland. In contrast, the Ebor A. s. mimetes clades closely with conspecifics from ACT and Victoria. A. arktos skulls are strikingly different to all subspecies of A. swainsonii. A. arktos are markedly larger than A. s. mimetes and A. s. swainsonii (Tasmania) for a range of craniodental measures. Antechinus arktos were historically found at a few proximate mountainous sites in south-east Queensland, and have only recently been recorded from or near the type locality. Even there, the species is likely in low abundance. The Black-tailed Antechinus has plausibly been detrimentally affected by climate change in recent decades, and will be at further risk with increasing warming trends.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The gross under-resourcing of conservation endeavours has placed an increasing emphasis on spending accountability. Increased accountability has led to monitoring forming a central element of conservation programs. Although there is little doubt that information obtained from monitoring can improve management of biodiversity, the cost (in time and/or money) of gaining this knowledge is rarely considered when making decisions about allocation of resources to monitoring. We present a simple framework allowing managers and policy advisors to make decisions about when to invest in monitoring to improve management. © 2010 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 2014, the northern outlying population of carnivorous marsupial Dusky Antechinus (Antechinus swainsonii) was nominated a new species, A. arktos. Here, we describe a further new species in the dasyurid A. swainsonii complex, which now contains five taxa. We recognise two distinct species from Tasmania, formerly represented by A. swainsonii swainsonii (Waterhouse); one species (and 2 subspecies) from mainland south-eastern Australia, formerly known as A. swainsonii mimetes (Thomas) and A. swainsonii insulanus Davison; and one species from the Tweed Caldera in mid-eastern Australia, formerly known as A. s. mimetes but recently described as A. arktos Baker, Mutton, Hines and Van Dyck. Primacy of discovery dictates the Tasmanian Dusky Antechinus A. swainsonii (Waterhouse) is nominate; the Mainland Dusky Antechinus taxa, one raised from subspecies within A. swainsonii mimetes (Thomas) is elevated to species (now A. mimetes mimetes) and the other, A. swainsonii insulanus Davison is transferred as a subspecies of A. mimetes (now A. mimetes insulanus); a species from Tasmania, the Tasman Peninsula Dusky Antechinus, is named A. vandycki sp. nov. These taxa are strongly differentiated: geographically (in allopatry), morphologically (in coat colour and craniodental features) and genetically (in mtDNA, 7.5-12.5% between species pairs).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enhancing digestibility of native pastures by cattle using kangaroo fibrolytic bacteria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Marsupial mammals are born in an embryonic state, as compared with their eutherian counterparts, yet certain features are accelerated. The most conspicuous of these features are the precocial forelimbs, which the newborns use to climb unaided from the opening of the birth canal to the teat. The developmental mechanisms that produce this acceleration are unknown. Here we show that heterochronic and heterotopic changes early in limb development contribute to forelimb acceleration. Using Tbx5 and Tbx4 as fore- and hindlimb field markers, respectively, we have found that, compared with mouse, both limb fields arise notably early during opossum development. Patterning of the forelimb buds is also accelerated, as Shh expression appears early relative to the outgrowth of the bud itself. In addition, the forelimb fields and forelimb myocyte allocation are increased in size and number, respectively, and migration of the spinal nerves into the forelimb bud has been modified. This shift in the extent of the forelimb field is accompanied by shifts in Hox gene expression along the anterior-posterior axis. Furthermore, we found that both fore- and hindlimb fields arise gradually during gastrulation and extension of the embryonic axis, in contrast to the appearance of the limb fields in their entirety in all other known cases. Our results show a surprising evolutionary flexibility in the early limb development program of amniotes and rule out the induction of the limb fields by mature structures such as the somites or mesonephros.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An organism is built through a series of contingent factors, yet it is determined by historical, physical, and developmental constraints. A constraint should not be understood as an absolute obstacle to evolution, as it may also generate new possibilities for evolutionary change. Modularity is, in this context, an important way of organizing biological information and has been recognized as a central concept in evolutionary biology bridging on developmental, genetics, morphological, biochemical, and physiological studies. In this article, we explore how modularity affects the evolution of a complex system in two mammalian lineages by analyzing correlation, variance/covariance, and residual matrices (without size variation). We use the multivariate response to selection equation to simulate the behavior of Eutheria and Metharia skulls in terms of their evolutionary flexibility and constraints. We relate these results to classical approaches based on morphological integration tests based on functional/developmental hypotheses. Eutherians (Neotropical primates) showed smaller magnitudes of integration compared with Metatheria (didelphids) and also skull modules more clearly delimited. Didelphids showed higher magnitudes of integration and their modularity is strongly influenced by within-groups size variation to a degree that evolutionary responses are basically aligned with size variation. Primates still have a good portion of the total variation based on size; however, their enhanced modularization allows a broader spectrum of responses, more similar to the selection gradients applied (enhanced flexibility). Without size variation, both groups become much more similar in terms of modularity patterns and magnitudes and, consequently, in their evolutionary flexibility. J. Exp. Zool. (Mol. Dev. Evol.) 314B:663-683, 2010. (C) 2010 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here we describe the stomach contents of nine small mammal species (seven rodents and two didelphid marsupials) co-occurring in an old-growth Atlantic forest area. For four terrestrial rodents, we also compared the importance of arthropods in the diet and the selection of arthropod groups by comparing consumption with availability. Small mammals and arthropods were sampled in a 36-ha grid containing 25 sampling stations spaced every 150 m, and 47 stomach contents were analysed. While plant matter was the predominant item in the stomach contents of two rodents (Oligoryzomys nigripes and Rhipidomys mastacalis), four species presented arthropods as the main food item (the rodents Brucepattersonius soricinus and Oxymycterus dasytrichus, and the marsupials Monodelphis n. sp. and Marmosops incanus) and three consumed more plant matter than arthropods, but had significant amounts of both items (the rodents Delomys sublineatus, Euryoryzomys russatus and Thaptomys nigrita). Our results suggest that differences in diet, coupled with differences in habit and microhabitat preferences, are important factors allowing resource partition among species of the diverse group of co-occurring terrestrial small mammals in Atlantic forest areas. Moreover, arthropods were not preyed opportunistically by any of the four terrestrial rodents, since consumption was not proportional to availability. Rather, selection or rejection of arthropod groups seems to be determined by aspects other than availability, such as nutritional value, easiness of capture and handling or palatability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chromosomes of the South American geckos Gymnodactylus amarali and G. geckoides from open and dry areas of the Cerrado and Caatinga biomes in Brazil, respectively, were studied for the first time, after conventional and AgNOR staining, CBG- and RBG-banding, and FISH with telomeric sequences. Comparative analyses between the karyotypes of open areas and the previously studied Atlantic forest species G. darwinii were also performed. The chromosomal polymorphisms detected in populations of G. amarali from the states of Goias and Tocantins is the result of centric fusions (2n = 38, 39 and 40), suggesting a differentiation from a 2n = 40 ancestral karyotype and the presence of supernumerary chromosomes. The CBG- and RBG-banding patterns of the Bs are described. G. geckoides has 40 chromosomes with gradually decreasing sizes, but it is distinct from the 2n = 40 karyotypes of G. amarali and G. darwinii due to occurrence of pericentric inversions or centromere repositioning. NOR location seems to be a marker for Gymnodactylus, as G. amarali and G. geckoides share a medium-sized subtelocentric NOR-bearing pair, while G. darwinii has NORs at the secondary constriction of the long arm of pair 1. The comparative analyses indicate a non-random nature of the Robertsonian rearrangements in the genus Gymnodactylus. Copyright (C) 2010 S. Karger AG, Basel

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The doubly labelled water method (DLW) is widely used to measure field metabolic rate (FMR), but it has some limitations. Here, we validate an innovative technique for measuring FMR by comparing the turnover of isotopic rubidium (86Rb kb) with DLW depletion and the rate of CO2 production (V·co2) measured by flow-through respirometry (FTR) for two dunnart species (Marsupialia: Dasyuridae), Sminthopsis macroura (17 g) and Sminthopsis ooldea (10 g). The rate of metabolism as assessed by V·co2 (FTR) and 86Rb kb was significantly correlated for both species (S. macroura, r2 = 0·81, P = 1·19 × 10-5; S. ooldea, r2 = 0·63, P = 3·84 × 10-4), as was V·co2 from FTR and DLW for S. macroura (r2 = 0·43, P = 0·039), but not for S. ooldea (r2 = 0·29, P = 0·168). There was no relationship between V·co2 from DLW and 86Rb kb for either species (S. macroura r2 = 0·22, P = 0·169; S. ooldea r2 = 0·21, P = 0·253). We conclude that 86Rb kb provided useful estimates of metabolic rate for dunnarts. Meta-analysis provided different linear relationships between V·co2 and 86Rb kb for endotherms and ectotherms, suggesting different proportionalities between metabolic rate and 86Rb kb for different taxa. Understanding the mechanistic basis for this correlation might provide useful insights into the cause of these taxonomic differences in the proportionality. At present, it is essential that the relationship between metabolic rate and 86Rb kb be validated for each taxon of interest. The advantages of the 86Rb technique over DLW include lower equipment requirements and technical expertise, and the longer time span over which measurements can be made. The 86Rb method might be particularly useful for estimating FMR of groups for which the assumptions of the DLW technique are compromised (e.g. amphibians, diving species and fossorial species), and groups that are practically challenging for DLW studies (e.g. insects). © 2013 British Ecological Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A densely sampled, diverse new fauna from the uppermost Cedar Mountain Formation, Utah, indicates that the basic pattern of faunal composition for the Late Cretaceous of North America was already established by the Albian-Cenomanian boundary. Multiple, concordant 40Ar/39Ar determinations from a volcanic ash associated with the fauna have an average age of 98.39 ± 0.07 million years. The fauna of the Cedar Mountain Formation records the first global appearance of hadrosaurid dinosaurs, advanced lizard (e.g., Helodermatidae), and mammal (e.g., Marsupialia) groups, and the first North American appearance of other taxa such as tyrannosaurids, pachycephalosaurs, and snakes. Although the origin of many groups is unclear, combined biostratigraphic and phylogenetic evidence suggests an Old World, specifically Asian, origin for some of the taxa, an hypothesis that is consistent with existing evidence from tectonics and marine invertebrates. Large-bodied herbivores are mainly represented by low-level browsers, ornithopod dinosaurs, whose radiations have been hypothesized to be related to the initial diversification of angiosperm plants. Diversity at the largest body sizes (>106 g) is low, in contrast to both preceding and succeeding faunas; sauropods, which underwent demise in the Northern hemisphere coincident with the radiation of angiosperms, apparently went temporarily unreplaced by other megaherbivores. Morphologic and taxonomic diversity among small, omnivorous mammals, multituberculates, is also low. A later apparent increase in diversity occurred during the Campanian, coincident with the appearance of major fruit types among angiosperms, suggesting the possibility of adaptive response to new resources.