973 resultados para TRUNCATED INFLATED BETA DISTRIBUTION
Resumo:
Mixtures of Zellner's g-priors have been studied extensively in linear models and have been shown to have numerous desirable properties for Bayesian variable selection and model averaging. Several extensions of g-priors to Generalized Linear Models (GLMs) have been proposed in the literature; however, the choice of prior distribution of g and resulting properties for inference have received considerably less attention. In this paper, we extend mixtures of g-priors to GLMs by assigning the truncated Compound Confluent Hypergeometric (tCCH) distribution to 1/(1+g) and illustrate how this prior distribution encompasses several special cases of mixtures of g-priors in the literature, such as the Hyper-g, truncated Gamma, Beta-prime, and the Robust prior. Under an integrated Laplace approximation to the likelihood, the posterior distribution of 1/(1+g) is in turn a tCCH distribution, and approximate marginal likelihoods are thus available analytically. We discuss the local geometric properties of the g-prior in GLMs and show that specific choices of the hyper-parameters satisfy the various desiderata for model selection proposed by Bayarri et al, such as asymptotic model selection consistency, information consistency, intrinsic consistency, and measurement invariance. We also illustrate inference using these priors and contrast them to others in the literature via simulation and real examples.
Resumo:
The Dirichlet distribution is a multivariate generalization of the Beta distribution. It is an important multivariate continuous distribution in probability and statistics. In this report, we review the Dirichlet distribution and study its properties, including statistical and information-theoretic quantities involving this distribution. Also, relationships between the Dirichlet distribution and other distributions are discussed. There are some different ways to think about generating random variables with a Dirichlet distribution. The stick-breaking approach and the Pólya urn method are discussed. In Bayesian statistics, the Dirichlet distribution and the generalized Dirichlet distribution can both be a conjugate prior for the Multinomial distribution. The Dirichlet distribution has many applications in different fields. We focus on the unsupervised learning of a finite mixture model based on the Dirichlet distribution. The Initialization Algorithm and Dirichlet Mixture Estimation Algorithm are both reviewed for estimating the parameters of a Dirichlet mixture. Three experimental results are shown for the estimation of artificial histograms, summarization of image databases and human skin detection.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Estatistica, 2015.
Resumo:
uring periods of market stress, electricity prices can rise dramatically. Electricity retailers cannot pass these extreme prices on to customers because of retail price regulation. Improved prediction of these price spikes therefore is important for risk management. This paper builds a time-varying-probability Markov-switching model of Queensland electricity prices, aimed particularly at forecasting price spikes. Variables capturing demand and weather patterns are used to drive the transition probabilities. Unlike traditional Markov-switching models that assume normality of the prices in each state, the model presented here uses a generalised beta distribution to allow for the skewness in the distribution of electricity prices during high-price episodes.
Resumo:
Many websites presently provide the facility for users to rate items quality based on user opinion. These ratings are used later to produce item reputation scores. The majority of websites apply the mean method to aggregate user ratings. This method is very simple and is not considered as an accurate aggregator. Many methods have been proposed to make aggregators produce more accurate reputation scores. In the majority of proposed methods the authors use extra information about the rating providers or about the context (e.g. time) in which the rating was given. However, this information is not available all the time. In such cases these methods produce reputation scores using the mean method or other alternative simple methods. In this paper, we propose a novel reputation model that generates more accurate item reputation scores based on collected ratings only. Our proposed model embeds statistical data, previously disregarded, of a given rating dataset in order to enhance the accuracy of the generated reputation scores. In more detail, we use the Beta distribution to produce weights for ratings and aggregate ratings using the weighted mean method. Experiments show that the proposed model exhibits performance superior to that of current state-of-the-art models.
Resumo:
We propose a new model for estimating the size of a population from successive catches taken during a removal experiment. The data from these experiments often have excessive variation, known as overdispersion, as compared with that predicted by the multinomial model. The new model allows catchability to vary randomly among samplings, which accounts for overdispersion. When the catchability is assumed to have a beta distribution, the likelihood function, which is refered to as beta-multinomial, is derived, and hence the maximum likelihood estimates can be evaluated. Simulations show that in the presence of extravariation in the data, the confidence intervals have been substantially underestimated in previous models (Leslie-DeLury, Moran) and that the new model provides more reliable confidence intervals. The performance of these methods was also demonstrated using two real data sets: one with overdispersion, from smallmouth bass (Micropterus dolomieu), and the other without overdispersion, from rat (Rattus rattus).
Resumo:
This thesis introduced two novel reputation models to generate accurate item reputation scores using ratings data and the statistics of the dataset. It also presented an innovative method that incorporates reputation awareness in recommender systems by employing voting system methods to produce more accurate top-N item recommendations. Additionally, this thesis introduced a personalisation method for generating reputation scores based on users' interests, where a single item can have different reputation scores for different users. The personalised reputation scores are then used in the proposed reputation-aware recommender systems to enhance the recommendation quality.
Resumo:
Compression of a rough turned cylinder between two hard, smooth, flat plates has been analysed with the aid of a mathematical model based on statistical analysis. It is assumed that the asperity peak heights follow Gaussian or normal and beta distribution functions and that the loaded asperities comply as though they are completely isolated from the neighbouring ones. Equations have been developed for the loadcompliance relation of the real surface using a simplified relation of the form W0 = K1δn for the load-compliance of a single asperity. Parameters K1 and n have considerable influence on the load-compliance curve and they depend on the material, tip angle of the asperity, standard deviation of the asperity peak height distribution and the density of the asperities.
Resumo:
In contemporary wideband orthogonal frequency division multiplexing (OFDM) systems, such as Long Term Evolution (LTE) and WiMAX, different subcarriers over which a codeword is transmitted may experience different signal-to-noise-ratios (SNRs). Thus, adaptive modulation and coding (AMC) in these systems is driven by a vector of subcarrier SNRs experienced by the codeword, and is more involved. Exponential effective SNR mapping (EESM) simplifies the problem by mapping this vector into a single equivalent fiat-fading SNR. Analysis of AMC using EESM is challenging owing to its non-linear nature and its dependence on the modulation and coding scheme. We first propose a novel statistical model for the EESM, which is based on the Beta distribution. It is motivated by the central limit approximation for random variables with a finite support. It is simpler and as accurate as the more involved ad hoc models proposed earlier. Using it, we develop novel expressions for the throughput of a point-to-point OFDM link with multi-antenna diversity that uses EESM for AMC. We then analyze a general, multi-cell OFDM deployment with co-channel interference for various frequency-domain schedulers. Extensive results based on LTE and WiMAX are presented to verify the model and analysis, and gain new insights.
Resumo:
O gerenciamento do tempo nos projetos de construção civil usualmente utiliza algoritmos determinísticos para o cálculo dos prazos de finalização e algoritmos PERT para avaliação da probabilidade de o mesmo terminar até uma determinada data. Os resultados calculados pelos algoritmos tradicionais possuem defasagens nos prazos se comparados aos encontrados na realidade o que vem fazendo com que a simulação venha se tornando uma ferramenta cada vez mais utilizada no gerenciamento de projetos. O objetivo da dissertação é estudar o problema dos prazos de finalização dos projetos desenvolvendo novas técnicas de cálculo que reflitam melhor os prazos encontrados na vida real. A partir disso é criada uma ferramenta prática de gerenciamento do tempo de atividades de projetos de construção enxuta baseada em planilha eletrônica onde serão utilizadas técnicas de simulação a eventos discretos, com base em distribuições de probabilidade como, por exemplo, a distribuição beta.
Resumo:
Exercises and solutions in LaTex
Resumo:
Exercises and solutions in PDF
Resumo:
Trust and reputation are important factors that influence the success of both traditional transactions in physical social networks and modern e-commerce in virtual Internet environments. It is difficult to define the concept of trust and quantify it because trust has both subjective and objective characteristics at the same time. A well-reported issue with reputation management system in business-to-consumer (BtoC) e-commerce is the “all good reputation” problem. In order to deal with the confusion, a new computational model of reputation is proposed in this paper. The ratings of each customer are set as basic trust score events. In addition, the time series of massive ratings are aggregated to formulate the sellers’ local temporal trust scores by Beta distribution. A logical model of trust and reputation is established based on the analysis of the dynamical relationship between trust and reputation. As for single goods with repeat transactions, an iterative mathematical model of trust and reputation is established with a closed-loop feedback mechanism. Numerical experiments on repeated transactions recorded over a period of 24 months are performed. The experimental results show that the proposed method plays guiding roles for both theoretical research into trust and reputation and the practical design of reputation systems in BtoC e-commerce.
Resumo:
O presente trabalho teve por objetivo a apresentação de um modelo iterativo para utilização em microcomputadores capaz de estimar valores de evapotranspiracão de referencia em diversos níveis de probabilidade, a partir de uma série de dados. O procedimento matemático envolvido na técnica iterativa empregada relaciona-se à utilização das funções de densidade gama incompleta e beta. Para tanto, foram utilizados dados quinzenais de evapotranspiracão do mês de março, a partir de uma série de 30 anos para a região de Piracicaba-SP. Através do teste de Kolmogorov-Smirnov, verificou-se que dados estimados através do modelo apresentaram alto grau de ajuste com dados relatados em literatura, justificando assim sua utilização.
Resumo:
Pós-graduação em Física - IGCE