993 resultados para TISSUE-REPAIR


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tissue damage resulting from chemical, mechanical, and biological injury, or from interrupted blood flow and reperfusion, is often life threatening. The subsequent tissue response involves an intricate series of events including inflammation, oxidative stress, immune cell recruitment, and cell survival, proliferation, migration, and differentiation. In addition, fibrotic repair characterized by myofibroblast transdifferentiation and the deposition of ECM proteins is activated. Failure to initiate, maintain, or stop this repair program has dramatic consequences, such as cell death and associated tissue necrosis or carcinogenesis. In this sense, inflammation and oxidative stress, which are beneficial defense processes, can become harmful if they do not resolve in time. This repair program is largely based on rapid and specific changes in gene expression controlled by transcription factors that sense injury. PPARs are such factors and are activated by lipid mediators produced after wounding. Here we highlight advances in our understanding of PPAR action during tissue repair and discuss the potential for these nuclear receptors as therapeutic targets for tissue injury.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nanotechnologists have become involved in regenerative medicine via creation of biomaterials and nanostructures with potential clinical implications. Their aim is to develop systems that can mimic, reinforce or even create in vivo tissue repair strategies. In fact, in the last decade, important advances in the field of tissue engineering, cell therapy and cell delivery have already been achieved. In this review, we will delve into the latest research advances and discuss whether cell and/or tissue repair devices are a possibility. Focusing on the application of nanotechnology in tissue engineering research, this review highlights recent advances in the application of nano-engineered scaffolds designed to replace or restore the followed tissues: (i) skin; (ii) cartilage; (iii) bone; (iv) nerve; and (v) cardiac.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Modified fluorcanasite glasses were fabricated by either altering the molar ratios of Na 2O and CaO or by adding P 2O 5 to the parent stoichiometric glass compositions. Glasses were converted to glass-ceramics by a controlled two-stage heat treatment process. Rods (2 mm x 4 mm) were produced using the conventional lost-wax casting technique. Osteoconductive 45S5 bioglass was used as a reference material. Biocompatibility and osteoconductivity were investigated by implantation into healing defects (2 mm) in the midshaft of rabbit femora. Tissue response was investigated using conventional histology and scanning electron microscopy. Histological and histomorphometric evaluation of specimens after 12 weeks implantation showed significantly more bone contact with the surface of 45S5 bioglass implants when compared with other test materials. When the bone contact for each material was compared between experimental time points, the Glass-Ceramic 2 (CaO rich) group showed significant difference (p = 0.027) at 4 weeks, but no direct contact at 12 weeks. Histology and backscattered electron photomicrographs showed that modified fluorcanasite glass-ceramic implants had greater osteoconductivity than the parent stoichiometric composition. Of the new materials, fluorcanasite glass-ceramic implants modified by the addition of P 2O 5 showed the greatest stimulation of new mineralized bone tissue formation adjacent to the implants after 4 and 12 weeks implantation. © 2010 Wiley Periodicals, Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective: The aim of the present study was to determine the effect of GaAlAs low-level laser therapy (LLLT) on collagen IV remodeling of the tibialis anterior (TA) muscle in rats after cryolesion. Background: Considerable interest exists in skeletal muscle regeneration in situations such as repair after exercise-induced muscle injury, after muscle transplantation, in muscular dystrophy, exercise-induced muscle injury, and the recovery of strength after atrophy due to disuse. A number of studies have demonstrated the potential of LLLT in facilitating the muscle-healing process; however, no consensus is found in the literature regarding the best laser-irradiation parameters. Methods: Adult male Wistar rats (n = 45) were used and randomly divided into three groups: control (n = 5); nontreated cryolesioned group (n = 20), and LLLT-cryolesioned group (n = 20). The cryolesioned groups were analyzed at 1, 7, 14, and 21 days after the injury procedure. Laser irradiation was performed 3 times per week on the injured region by using the GaAlAs laser (660 nm; beam spot of 0.04 cm(2), output power of 20 mW, power density of 500 mW/cm(2), and energy density of 5 J/cm(2), for 10 sec). The muscles were removed, frozen, cryosectioned, and then stained with hematoxylin-eosin for the visualization of general morphology or used for immunohistochemical analysis of collagen IV. Results: It was demonstrated that LLLT promotes an increase in collagen IV immunolabeling in skeletal muscle in the first 7 days after acute trauma caused by cryoinjury, but does not modify the duration of the tissue-repair process. Even with LLLT, the injured muscle tissue needs similar to 21 days to achieve the same state of organization as that in the noninjured muscle. Conclusion: The collagen IV content is modulated in regenerating skeletal muscle under LLLT, which might be associated with better tissue outcome, although the histologic analysis did not detect tissue improvement in the LLLT group.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background/Aims: The use of low-level laser therapy (LLLT) in neurosurgery is still hardly disseminated and there are situations in which the effects of this therapeutic tool would be extremely relevant in this medical field. The aim of the present study is to analyze the effect of LLLT on tissue repair after the corrective surgical incision in neonates with myelomeningocele, in an attempt to diminish the incidence of postoperative dehiscences following surgical repair performed immediately after birth. Materials and Methods: Prospective pilot study with 13 patients submitted to surgery at birth who received adjuvant treatment with LLLT (group A). A diode laser CW, lambda = 685 nm, p = 21 mW, was applied punctually along the surgical incision, with 0.19 J delivered per point, accounting for a total of 4-10 J delivered energy per patient, according to the surgical wound area and then compared with the results obtained in 23 patients who underwent surgery without laser therapy (group B). Results: This pilot study disclosed a significant decline in dehiscences of the surgical wounds in neonates who were submitted to LLLT (7.69 vs. 17.39%). Conclusion: This new adjuvant therapeutic modality with LLLT aided the healing of surgical wounds, preventing morbidities, as well as shortening the period of hospital stay, which implies a reduction of costs for patients and for the institution. Copyright (C) 2010 S. Karger AG, Basel

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Injury triggers inflammatory responses and tissue repair. Several treatments are currently in use to accelerate healing: however, more efficient formulations are still needed for specific injuries. Since unsaturated fatty acids modulate immune responses, we aimed to evaluate their therapeutic effects on wound healing. Skin wounds were induced in BALB/c mice and treated for 5 days with n-3, n-9 fatty acids or vehicle (control). n-9 treated mice presented smaller wounds than control and n-3 at 120 h post-surgery (p.s.). Collagen III mRNA,TIMP1 and MMP9 were significantly elevated in n-9 group compared to n-3 or vehicle at 120 h p.s. Among the inflammatory mediators studied we found that IL-10, TNF-alpha and IL-17 were also higher in n-9 treated group compared to n-3 or vehicle at 120 h p.s. Interestingly, COX2 had decreased expression on wound tissue treated with n-9. Inflammatory infiltrate analysis revealed diminished frequency of CD4(+), CD8(+) and CD11b(+) cells in n-9 wounds at 24 and 120 h p.s., which was not related to cell death, since in vitro apoptosis experiments did not show any cell damage after fatty acids administration. These results suggested that unsaturated fatty acids, specifically n-9, modulate the inflammation in the wound and enhance reparative response in vivo. n-9 may be a useful tool in the treatment of cutaneous wounds. (C) 2010 Elsevier GmbH. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sox18 encodes a member of the Sry-related high mobility group box (SOX) family of developmental transcription factors. Examination of Sox18 expression during embryogenesis has shown that Sox18 is expressed transiently in endothelial cells of developing blood vessels, and mutations in Sox18 have been found to underlie the mouse vascular and hair follicle mutant ragged. In this study we have examined the expression of Sox18 in angiogenesis during wound healing. Full-thickness skin wounds were created in mice, and subsequent expression of vascular endothelial growth factor (VEGF), the VEGF receptor Flk-1, alpha1 (iv) collagen (Col4a1), and Sox18 were studied using in situ hybridization. As has been previously reported, VEGF was expressed predominantly in the keratinocytes at the wound margins. Sox18 expression was found Rye days after wounding during capillary sprouting in granulation tissue and persisted through the proliferative phase of healing, but was not detected in fully epithelialized wounds 21 days after wounding. Sox18 mRNA expression was detected in capillaries within the granulation tissue and showed an identical pattern of distribution to Flk-1 and Col4a1 mRNA expression in endothelial cells. Immunostaining with a polyclonal anti-Sox18 antibody showed SOX18 protein localized in capillary endothelial cells within the granulation tissue. capillaries in the subcutaneous tissue of unwounded skin showed no Sox18 expression. Sox18 may therefore represent a transcription factor involved in the induction of angiogenesis during wound healing and tissue repair, but not in the maintenance of endothelial cells in undamaged tissue.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Summary : Platelet Derived Growth Factor (PDGF) and Transforming Growth Factor-ß (TGF-ß) are two crucial growth factors in tissue repair and regeneration. They control migration and proliferation of macrophages and fibroblasts, as well as myofibroblast differentiation and synthesis of the new connective tissue. The transcription factor Nuclear Factor I-C (NFI-C) has been implicated in the TGF-ß pathway and regulation of extracellular matrix proteins in vitro. This suggests a possible implication of NFI-C in tissue repair. In this study, our purpose was to identify the NFI-C target genes in TGF-ß1 pathway activation and define the relationship between these two factors in cutaneous wound healing process. High-throughput genomic analysis in wild-type and NFI-C knock-out embryonic fibroblasts indicated that NFI-C acts as a repressor of the expression of genes which transcriptional activity is enhanced by TGF-ß. Interestingly, we found an over representation of genes involved in connective tissue inflammation and repair. In accordance with the genomic analysis, NFI-C-/- mice showed an improvement of skin healing during the inflammatory stage. Analysis of this new phenotype indicated that the expression of PDGFA and PDGF-Ra genes were increased in the wounds of NFI-C-/- mice resulting in early recruitment of macrophages and fibroblasts in the granulation tissue. In correlation with the stimulation effect of TGF-ß on myofibroblast differentiation we found an increased differentiation of these cells in null mice, providing a rationale for rapid wound closure. Thus, in the absence of NFI-C, both TGF-ß and PDGF pathways may be activated, leading to enhanced healing process. Therefore, the inhibition of NFI-C expression could constitute a suitable therapy for healing improvement. In addition, we identified a delay of hair follicle cycle initiation in NFI-C-/- mice. This prompted us to investigate the role of NFI-C in skin appendage. The transition from a quiescent to a proliferative phase requires a perfect timing of signalling modulation, leading to stem cell activation. As a consequence of cycle initiation delay in null mice, the activation of signalling involved in cell proliferation was also retarded. Interestingly, at the crucial moment of cell fate determination, we identified a decrease of CD34 gene in mutant mice. Since CD34 protein is involved in migration of multipotent cells, we suggest that NFI-C may be involved in stem cell mobilisation required for hair follicle renewal. Further investigations of the role of NFI-C in progenitor cell activation will lead to a better understanding of tissue regeneration and raise the possibility of treating alopecia with NFI-C-targeting treatment. In summary, this study demonstrates new regenerative functions of NFI-C in adult mice, which regulates skin repair and hair follicle renewal. Résumé : PDGF et TGF-ß sont des facteurs important du mécanisme de défense immunitaire. Ils influencent la prolifération et migration des macrophages et des fibroblastes, ainsi que la différenciation des myofibroblastes et la formation du nouveau tissu conjonctif. Le facteur de transcription NFI-C a été impliqué dans la voie de signalisation de TGF-ß et dans 1a régulation de l'expression des protéines de la matrice extracellulaire in vitro. Ces études antérieures laissent supposer que NFI-C serait un facteur important du remodelage tissulaire. Cependant le rôle de NFI-C dans un tissu comme la peau n'a pas encore été étudié. Dans ce travail, le but a été de d'identifier la relation qu'il existe entre I~1FI-C et TGF-ßl à un niveau transcriptionnel et dans le processus de cicatrisation cutanée in vivo. Ainsi, une analyse génétique à grande échelle, a permis d'indiquer que NFI-C agit comme un répresseur sur l'expression des gènes dont l'activité transcriptionnelle est activée par TGF-ß. De plus nous avons identifié un groupe de gènes qui controlent le développement et l'inflammation du tissue conjonctif. En relation avec ce résultat, l'absence de NFI-C dans la peau induit une cicatrisation plus rapide pendant la phase inflammatoire. Durant cette période, nous avons montré que les expressions de PDGFA et PDGFRa seraient plus élevées en absence de NFI-C. En conséquence, l'activation de la voie de PDGF induit une infiltration plus importante des macrophages et fibroblastes dans le tissue granuleux des souris mutantes. De plus, en corrélation avec le rôle de TGF-ßl dans la différenciation des myofibroblasts, nous avons observé une différenciation plus importante de ces cellules chez les animaux knock-out, ce qui peut expliquer une contraction plus rapide de la plaie. De plus, nous avons découvert que NFI-C est impliqué dans l'initiation du cycle folliculaire. La caractérisation de ce nouveau phénotype a montré un ralentissement de la transition telogène-anagène des souris NFI-C-/-. Or, un événement clé de cette transition est la modulation de plusieurs signaux moléculaires aboutissant à' l'activation des cellules souches. En corrélation avec le decalage du cycle, l'activation de ces signaux est également décalée dans les souris NFI-C-/-. Ainsi, au commencement de l'anagène, la prolifération des keratinocytes,NFI-C-/- est retardée et corrèle avec une diminution de l'expression de CD34, une protéine responsable de la détermination du migration des cellules multipotentes. Ainsi, NFI-C semble être impliqué dans la mobilisation des cellules souches qui sont nécessaires au renouvellement folliculaire. En résumé, NFI-C est impliqué dans la régulation des signaux moléculaires nécessaires à la réparation tissulaire et son inhibition pourrait constituer un traitement de la cicatrisation. L'analyse de son rôle dans l'activation des cellules souches permettrait de mieux comprendre le renouvellement tissulaire et, à long terme, d'améliorer les techniques de greffe des cellules souches épithéliales ou consituter une cible pour le traitement de l'alopecie.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The circadian timekeeping mechanism adapts physiology to the 24-hour light/dark cycle. However, how the outputs of the circadian clock in different peripheral tissues communicate and synchronize each other is still not fully understood. The circadian clock has been implicated in the regulation of numerous processes, including metabolism, the cell cycle, cell differentiation, immune responses, redox homeostasis, and tissue repair. Accordingly, perturbation of the machinery that generates circadian rhythms is associated with metabolic disorders, premature ageing, and various diseases including cancer. Importantly, it is now possible to target circadian rhythms through systemic or local delivery of time cues or compounds. Here, we summarize recent findings in peripheral tissues that link the circadian clock machinery to tissue-specific functions and diseases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The repair process of damaged tissue involves the coordinated activities of several cell types in response to local and systemic signals. Following acute tissue injury, infiltrating inflammatory cells and resident stem cells orchestrate their activities to restore tissue homeostasis. However, during chronic tissue damage, such as in muscular dystrophies, the inflammatory-cell infiltration and fibroblast activation persists, while the reparative capacity of stem cells (satellite cells) is attenuated. Abnormal dystrophic muscle repair and its end stage, fibrosis, represent the final common pathway of virtually all chronic neurodegenerative muscular diseases. As our understanding of the pathogenesis of muscle fibrosis has progressed, it has become evident that the muscle provides a useful model for the regulation of tissue repair by the local microenvironment, showing interplay among muscle-specific stem cells, inflammatory cells, fibroblasts and extracellular matrix components of the mammalian wound-healing response. This article reviews the emerging findings of the mechanisms that underlie normal versus aberrant muscle-tissue repair.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background and Aims: Granulocyte-macrophage colonystimulating factor (GM-CSF), a cytokine modulating the number and function of innate immune cells, has been shown to provide symptomatic benefit in some patients with Crohn's disease (CD). Since, it becomes widely appreciated that a timely and spatially regulated action of innate immune cells is critical for tissue regeneration, we tested whether GM-CSF therapy may favours intestinal mucosal repair in the acute mouse model of dextran sulfate sodium (DSS)-induced colitis. Methods: Mice treated with GM-CSF or saline were exposed for 7 days to DSS to induce colitis. On day 5, 7 and 10, mice were subjected to colonoscopy or sacrificed for evaluation of inflammatory reaction and mucosal healing. Results: GM-CSF therapy prevented body weight loss, diarrhea, dampened inflammatory reactions and ameliorated mucosal damages. Mucosal repair improvement in GM-CSF-treated mice was observed from day 7 on both by colonoscopy (ulceration score 1.2}0.3 (GM-CSF-treated) vs 3.1}0.5 (untreated), p = 0.01) and histological analysis (percentage of reepithelialized ulcers 55%}4% (GM-CSF-treated) vs 18%}13% (untreated), p = 0.01). GM-CSF therapy can still improve the colitis when hematopoietic, but not non-hematopoietic cells, are responsive to GM-CSF, as shown in WT→GM-CSFRKO chimeras. Lastly, we observed that GM-CSF-induced promotion of wound healing is associated with a modification of the cellular composition of DSS-induced colonic inflammatory infiltrate, characterized by the reduction of neutrophil numbers and early accumulation of CD11b+Gr1lo myeloid cells. Conclusion: Our study shows that GM-CSF therapy accelerates the complex program leading to tissue repair during acute colitis and suggests that GM-CSF promotion of mucosal repair might contribute to the symptomatic benefits of GM-CSF therapy observed in some CD patients.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Helminth parasites can cause considerable damage when migrating through host tissues, thus making rapid tissue repair imperative to prevent bleeding and bacterial dissemination particularly during enteric infection. However, how protective type 2 responses targeted against these tissue-disruptive multicellular parasites might contribute to homeostatic wound healing in the intestine has remained unclear. Here, we observed that mice lacking antibodies (Aid-/-) or activating Fc receptors (Fcrg-/-) displayed impaired intestinal repair following infection with the murine helminth Heligmosomoides polygyrus bakeri (Hpb), whilst transfer of immune serum could partially restore chemokine production and rescue wound healing in Aid-/- mice. Impaired healing was associated with a reduced expression of CXCR2 ligands (CXCL2/3) by macrophages (MΦ) and myofibroblasts (MF) within intestinal lesions. Whilst antibodies and helminths together triggered CXCL2 production by MΦ in vitro via surface FcR engagement, chemokine secretion by intestinal MF was elicited by helminths directly via Fcrg-chain/dectin2 signaling. Blockade of CXCR2 during Hpb challenge infection reproduced the delayed wound repair observed in helminth infected Aid-/- and Fcrg-/- mice. Finally, conditioned media from human MΦ stimulated with infective larvae of the helminth Ascaris suum together with immune serum, promoted CXCR2-dependent scratch wound closure by human MF in vitro. Collectively our findings suggest that helminths and antibodies instruct a chemokine driven MΦ-MF crosstalk to promote intestinal repair, a capacity that may be harnessed in clinical settings of impaired wound healing.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis focuses on tissue inhibitor of metalloproteinases 4 (TIMP4) which is the newest member of a small gene and protein family of four closely related endogenous inhibitors of extracellular matrix (ECM) degrading enzymes. Existing data on TIMP4 suggested that it exhibits a more restricted expression pattern than the other TIMPs with high expression levels in heart, brain, ovary and skeletal muscle. These observations and the fact that the ECM is of special importance to provide the cardiovascular system with structural strength combined with elasticity and distensibility, prompted the present molecular biologic investigation on TIMP4. In the first part of the study the murine Timp4 gene was cloned and characterized in detail. The structure of murine Timp4 genomic locus resembles that in other species and of the other Timps. The highest Timp4 expression was detected in heart, ovary and brain. As the expression pattern of Timp4 gives only limited information about its role in physiology and pathology, Timp4 knockout mice were generated next. The analysis of Timp4 knockout mice revealed that Timp4 deficiency has no obvious effect on the development, growth or fertility of mice. Therefore, Timp4 deficient mice were challenged using available cardiovascular models, i.e. experimental cardiac pressure overload and myocardial infarction. In the former model, Timp4 deficiency was found to be compensated by Timp2 overexpression, whereas in the myocardial infarct model, Timp4 deficiency resulted in increased mortality due to increased susceptibility for cardiac rupture. In the wound healing model, Timp4 deficiency was shown to result in transient retardation of re-epithelialization of cutaneous wounds. Melanoma tumor growth was similar in Timp4 deficient and control mice. Despite of this, lung metastasis of melanoma cells was significantly increased in Timp4 null mice. In an attempt to translate the current findings to patient material, TIMP4 expression was studied in human specimens representing different inflammatory cardiovascular pathologies, i.e. giant cell arteritis, atherosclerotic coronary arteries and heart allografts exhibiting signs of chronic rejection. The results showed that cardiovascular expression of TIMP4 is elevated particularly in areas exhibiting inflammation. The results of the present studies suggest that TIMP4 has a special role in the regulation of tissue repair processes in the heart, and also in healing wounds and metastases. Furthermore, evidence is provided suggesting the usefulness of TIMP4 as a novel systemic marker for vascular inflammation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The purpose of this study was to investigate the histological changes that occur in rat soft and hard tissues after Er,Cr:YSGG laser surgery. Each of 20 rats was submitted to four procedures which were randomly distributed to the right and left sides of the animal: procedure 1 dorsal incision with a scalpel; procedure 2 dorsal incision with a 2.0-W Er,Cr:YSGG laser; procedure 3 skull defect created with a diamond bur; procedure 4 skull defect created with a 3.0-W Er,Cr:YSGG laser. The animals were killed 3, 7, 15 and 30 days after surgery, and histological examinations were performed. The histometric analysis of the bone defects was evaluated using an unpaired t-test. Initially, the dorsum showed more histological signs of repair following procedure 1, although similar healing responses following procedures 1 and 2 were seen on day 30 after surgery. By day 30 the bone formation observed following procedure 4 was much more evident than following procedure 3. The unpaired t-test identified significant differences in bone formation on day 30 (p = 0.01), whereas a greater bone percentage was seen following procedure 4 than following procedure 3 (79.96 +/- 10.30% and 58.23 +/- 9.99%, respectively). Thus, histological repair of the Er,Cr:YSGG laser wounds was similar to that of the scalpel wounds. However, skull defects created with the Er,Cr:YSGG laser showed greater bone formation than defects created with the bur. Within the limitations of this study, we can conclude that the Er,Cr:YSGG laser is a promising surgical instrument in vivo, particularly for bone surgery.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Low-level laser therapy (LLLT) accelerates tissue repair. Mast cells induce the proliferation of fibroblasts and the development of local fibrosis. The objective of this study was to quantify fibrosis rate and mast cells in connective tissue after endodontic sealer zinc oxide and eugenol (ZOE) was implanted and submitted to LLLT, immediately after implant and again 24 h later. Sixty mice were distributed into three groups: GI, GII, and GIII (n = 20). In GI, the tubes filled with Endofill were implanted in the animals and were not irradiated with LLLT. In GII, the tubes containing Endofill were implanted in the animals and then irradiated with red LLLT (InGaAIP) 685-nm wavelength, D=72 J/Cm(2), E = 2 J, T=58 s, P=35 mW, and in GIII, the tubes with Endofill were implanted and irradiated with infrared LLLT (AsGaAl) 830-nm wavelength, D=70 J/Cm(2), E = 2 J, T=40 s, P=50 mW. After 7 days and 30 days, the animals were killed. A series of 6-mu m-thick sections were obtained and stained with Toluidine Blue and Picrosirius and analyzed under a standard light microscope using a polarized light filter for the quantification of fibrosis. The statistics were qualitative and quantitative with a significance of 5%. The irradiation with LLLT did not offer improvement in the fibrosis rate, however, it provided a significant decrease in the concentration of independent mast cells for the period studied.