119 resultados para THERMOLUMINESCENT DOSIMETERS
Resumo:
The RPC developed a new phantom to ensure comparable and consistent radiation administration in spinal radiosurgery clinical trials. This study assessed the phantom’s dosimetric and anatomic utility. The ‘spine phantom’ is a water filled thorax with anatomy encountered in spinal radiosurgery: target volume, vertebral column, spinal canal, esophagus, heart, and lungs. The dose to the target volume was measured with axial and sagittal planes of radiochromic film and thermoluminescent dosimeters (TLD). The dose distributions were measured with the radiochromic film calibrated to the absolute dose measured by the TLD. Four irradiations were administered: a four angle box plan, a seven angle conformal plan, a seven angle IMRT plan, and a nine angle IMRT plan (denoted as IMRT plan #1 and plan #2, respectively). In each plan, at least 95% of the defined tumor volume received 8 Gy. For each irradiation the planned and administered dose distributions were registered via pinpricks, and compared using point dose measurements, dose profiles, isodose distributions, and gamma analyses. Based on previous experience at the RPC, a gamma analysis was considering passing if greater than 95% of pixels passed the criteria of 5% dose difference and 3 mm distance-to-agreement. Each irradiation showed acceptable agreement in the qualitative assessments and exceeded the 95% passing rate at the 5% / 3 mm criteria, except IMRT plan #1, which was determined to have been poorly localized during treatment administration. The measured and planned dose distributions demonstrated acceptable agreement at the 5% / 3 mm criteria, and the spine phantom was determined to be a useful tool for the remote assessment of an institution’s treatment planning and dose delivery regimen.
Resumo:
Proton therapy has become an increasingly more common method of radiation therapy, with the dose sparing to distal tissue making it an appealing option, particularly for treatment of brain tumors. This study sought to develop a head phantom for the Radiological Physics Center (RPC), the first to be used for credentialing of institutions wishing to participate in clinical trials involving brain tumor treatment of proton therapy. It was hypothesized that a head phantom could be created for the evaluation of proton therapy treatment procedures (treatment simulation, planning, and delivery) to assure agreement between the measured dose and calculated dose within ±5%/3mm with a reproducibility of ±3%. The relative stopping power (RSP) and Hounsfield Units (HU) were measured for potential phantom materials and a human skull was cast in tissue-equivalent Alderson material (RLSP 1.00, HU 16) with anatomical airways and a cylindrical hole for imaging and dosimetry inserts drilled into the phantom material. Two treatment plans, proton passive scattering and proton spot scanning, were created. Thermoluminescent dosimeters (TLDs) and film were loaded into the phantom dosimetry insert. Each treatment plan was delivered three separate times. Each treatment plan passed our 5%/3mm criteria, with a reproducibility of ±3%. The hypothesis was accepted and the phantom was found to be suitable for remote audits of proton therapy treatment facilities.
Resumo:
Measurement of the absorbed dose from ionizing radiation in medical applications is an essential component to providing safe and reproducible patient care. There are a wide variety of tools available for measuring radiation dose; this work focuses on the characterization of two common, solid-state dosimeters in medical applications: thermoluminescent dosimeters (TLD) and optically stimulated luminescent dosimeters (OSLD). There were two main objectives to this work. The first objective was to evaluate the energy dependence of TLD and OSLD for non-reference measurement conditions in a radiotherapy environment. The second objective was to fully characterize the OSLD nanoDot in a CT environment, and to provide validated calibration procedures for CT dose measurement using OSLD. Current protocols for dose measurement using TLD and OSLD generally assume a constant photon energy spectrum within a nominal beam energy regardless of measurement location, tissue composition, or changes in beam parameters. Variations in the energy spectrum of therapeutic photon beams may impact the response of TLD and OSLD and could thereby result in an incorrect measure of dose unless these differences are accounted for. In this work, we used a Monte Carlo based model to simulate variations in the photon energy spectra of a Varian 6MV beam; then evaluated the impact of the perturbations in energy spectra on the response of both TLD and OSLD using Burlin Cavity Theory. Energy response correction factors were determined for a range of conditions and compared to measured correction factors with good agreement. When using OSLD for dose measurement in a diagnostic imaging environment, photon energy spectra are often referenced to a therapy-energy or orthovoltage photon beam – commonly 250kVp, Co-60, or even 6MV, where the spectra are substantially different. Appropriate calibration techniques specifically for the OSLD nanoDot in a CT environment have not been presented in the literature; furthermore the dependence of the energy response of the calibration energy has not been emphasized. The results of this work include detailed calibration procedures for CT dosimetry using OSLD, and a full characterization of this dosimetry system in a low-dose, low-energy setting.
Resumo:
The Radiological Physics Center (RPC) uses both on-site and remote reviews to credential institutions for participation in clinical trials. Anthropomorphic quality assurance (QA) phantoms are one tool the RPC uses to remotely audit institutions, which include thermoluminescent dosimeters (TLDs) and radiochromic film. The RPC desires to switch from TLD as the absolute dosimeter in the phantoms, to optically stimulated luminescent dosimeters (OSLDs), but a problem lies in the angular dependence exhibited by the OSLD. The purpose of this study was to characterize the angular dependence of OSLD and establish a correction factor if necessary, to provide accurate dosimetric measurements as a replacement for TLD in the QA phantoms. A 10 cm diameter high-impact polystyrene spherical phantom was designed and constructed to hold an OSLD to study the angular response of the dosimeter under the simplest of circumstances for both coplanar and non-coplanar treatment deliveries. OSLD were irradiated in the spherical phantom, and the responses of the dosimeter from edge-on angles were normalized to the response when irradiated with the beam incident normally on the surface of the dosimeter. The average normalized response was used to establish an angular correction factor for 6 MV and 18 coplanar treatments, and for 6 MV non-coplanar treatments specific to CyberKnife. The RPC pelvic phantom dosimetry insert was modified to hold OSLD, in addition to the TLD, adjacent to the planes of film. Treatment plans of increasing angular beam delivery were developed, three in Pinnacle v9.0 (4-field box, IMRT, and VMAT) and one in Accuray’s MultiPlan v3.5.3 (CyberKnife). The plans were delivered to the pelvic phantom containing both TLD and OSLD in the target volume. The pelvic phantom was also sent to two institutions to be irradiated as trials, one delivering IMRT, and the other a CyberKnife treatment. For the IMRT deliveries and the two institution trials, the phantom also included film in the sagittal and coronal planes. The doses measured from the TLD and OSLD were calculated for each irradiation, and the angular correction factors established from the spherical phantom irradiations were applied to the OSLD dose. The ratio of the TLD dose to the angular corrected OSLD dose was calculated for each irradiation. The corrected OSLD dose was found to be within 1% of the TLD measured dose for all irradiations, with the exception of the in-house CyberKnife deliveries. The films were normalized to both TLD measured dose and the corrected OSLD dose. Dose profiles were obtained and gamma analysis was performed using a 7%/4 mm criteria, to compare the ability of the OSLD, when corrected for the angular dependence, to provide equivalent results to TLD. The results of this study indicate that the OSLD can effectively be used as a replacement for TLD in the RPC’s anthropomorphic QA phantoms for coplanar treatment deliveries when a correction is applied for the dosimeter’s angular dependence.
Resumo:
Validation of treatment plan quality and dose calculation accuracy is essential for new radiotherapy techniques, including volumetric modulated arc therapy (VMAT). VMAT delivers intensity modulated radiotherapy treatments while simultaneously rotating the gantry, adding an additional level of complexity to both the dose calculation and delivery of VMAT treatments compared to static gantry IMRT. The purpose of this project was to compare two VMAT systems, Elekta VMAT and Varian RapidArc, to the current standard of care, IMRT, in terms of both treatment plan quality and dosimetric delivery accuracy using the Radiological Physics Center (RPC) head and neck (H&N) phantom. Clinically relevant treatment plans were created for the phantom using typical prescription and dose constraints for Elekta VMAT (planned with Pinnacle3 Smart Arc) and RapidArc and IMRT (both planned with Eclipse). The treatment plans were evaluated to determine if they were clinically comparable using several dosimetric criteria, including ability to meet dose objectives, hot spots, conformity index, and homogeneity index. The planned treatments were delivered to the phantom and absolute doses and relative dose distributions were measured with thermoluminescent dosimeters (TLDs) and radiochromic film, respectively. The measured and calculated doses of each treatment were compared to determine if they were clinically acceptable based upon RPC criteria of ±7% dose difference and 4 mm distance-to-agreement. Gamma analysis was used to assess dosimetric accuracy, as well. All treatment plans were able to meet the dosimetric objectives set by the RPC and had similar hot spots in the normal tissue. The Elekta VMAT plan was more homogenous but less conformal than the RapidArc and IMRT plans. When comparing the measured and calculated doses, all plans met the RPC ±7%/4 mm criteria. The percent of points passing the gamma analysis for each treatment delivery was acceptable. Treatment plan quality of the Elekta VMAT, RapidArc and IMRT treatments were comparable for consistent dose prescriptions and constraints. Additionally, the dosimetric accuracy of the Elekta VMAT and RapidArc treatments was verified to be within acceptable tolerances.
Resumo:
A passive neutron area monitor has been designed using Monte Carlo methods; the monitor is a polyethylene cylinder with pairs of thermoluminescent dosimeters (TLD600 and TLD700) as thermal neutron detector. The monitor was calibrated with a bare and a thermalzed 241AmBe neutron sources and its performance was evaluated measuring the ambient dose equivalent due to photoneutrons produced by a 15 MV linear accelerator for radiotherapy and the neutrons in the output of a TRIGA Mark III radial beam port.
Resumo:
Desde o seu desenvolvimento na década de 1970 a tomografia computadorizada (TC) passou por grandes mudanças tecnológicas, tornando-se uma importante ferramenta diagnóstica para a medicina. Consequentemente o papel da TC em diagnóstico por imagem expandiu-se rapidamente, principalmente devido a melhorias na qualidade da imagem e tempo de aquisição. A dose de radiação recebida por pacientes devido a tais procedimentos vem ganhando atenção, levando a comunidade científica e os fabricantes a trabalharem juntos em direção a determinação e otimização de doses. Nas últimas décadas muitas metodologias para dosimetria em pacientes têm sido propostas, baseadas especialmente em cálculos utilizando a técnica Monte Carlo ou medições experimentais com objetos simuladores e dosímetros. A possibilidade de medições in vivo também está sendo investigada. Atualmente as principais técnicas para a otimização da dose incluem redução e/ou modulação da corrente anódica. O presente trabalho propõe uma metodologia experimental para estimativa de doses absorvidas pelos pulmões devido a protocolos clínicos de TC, usando um objeto simulador antropomórfico adulto e dosímetros termoluminescentes de Fluoreto de Lítio (LiF). Sete protocolos clínicos diferentes foram selecionados, com base em sua relevância com respeito à otimização de dose e frequência na rotina clínica de dois hospitais de grande porte: Instituto de Radiologia do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (InRad) e Instituto do Câncer do Estado de São Paulo Octávio Frias de Oliveira (ICESP). Quatro protocolos de otimização de dose foram analisados: Auto mA, Auto + Smart mA, Baixa Dose (BD) e Ultra Baixa Dose (UBD). Os dois primeiros protocolos supracitados buscam redução de dose por meio de modulação da corrente anódica, enquanto os protocolos BD e UBD propõem a redução do valor da corrente anódica, mantendo-a constante. Os protocolos BD e UBD proporcionaram redução de dose de 72,7(8) % e 91(1) %, respectivamente; 16,8(1,3) % e 35,0(1,2) % de redução de dose foram obtidas com os protocolos Auto mA e Auto + Smart mA, respectivamente. As estimativas de dose para os protocolos analisados neste estudo são compatíveis com estudos similares publicados na literatura, demonstrando a eficiência da metodologia para o cálculo de doses absorvidas no pulmão. Sua aplicabilidade pode ser estendida a diferentes órgãos, diferentes protocolos de CT e diferentes tipos de objetos simuladores antropomórficos (pediátricos, por exemplo). Por fim, a comparação entre os valores de doses estimadas para os pulmões e valores de estimativas de doses dependentes do tamanho (Size Specific Dose Estimates SSDE) demonstrou dependência linear entre as duas grandezas. Resultados de estudos similares exibiram comportamentos similares para doses no reto, sugerindo que doses absorvidas pelos uma órgãos podem ser linearmente dependente dos valores de SSDE, com coeficientes lineares específicos para cada órgão. Uma investigação mais aprofundada sobre doses em órgãos é necessária para avaliar essa hipótese.
Resumo:
O sistema microPET/CT é um importante equipamento utilizado nas pesquisas de imagem diagnóstica em pequenos animais. O radiofármaco mais usado nesta tecnologia é o fluordeoxiglicose marcado com flúor-18. Este estudo tem como objetivo efetuar o controle radiológico no laboratório de pesquisa microPET/CT do Centro de Radiofarmácia do IPEN-CNEN/SP, de forma a satisfazer tanto as normas nacionais como as recomendações internacionais. O laboratório está classificado pela equipe de radioproteção da instalação como área supervisionada, nas quais embora não seja obrigatória a adoção de medidas específicas de proteção e segurança, devem ser submetidas reavaliações regulares das condições do ambiente de trabalho. Visando assegurar a proteção radiológica dos trabalhadores diretamente envolvidos no manuseio do equipamento, realizou-se o monitoramento do local de trabalho e a avaliação do controle de dose individual. Inicialmente foi feito o monitoramento pré-operacional, isto é, o levantamento radiométrico no laboratório. Além disso, mediu-se nível de radiação externa nas instalações do laboratório e suas adjacências, por meio da colocação de nove dosímetros termoluminescentes (TL) de CaSO4:Dy, em locais previamente selecionados. Os indivíduos ocupacionalmente expostos foram avaliados mensalmente por meio do uso de dosímetros TL posicionados no tórax e por medidas de corpo inteiro, tomadas a cada seis meses. O período do estudo foi de dois anos, com início em abril de 2014. Para o controle do microPET/CT realizou-se testes de desempenho de acordo com o protocolo padrão do equipamento e em conformidade com a norma desenvolvida pela força tarefa para estudos com PET em animais Animal PET Standard Task Force. O presente estudo permitiu demonstrar que os níveis de radiação das áreas (estimativas de dose ambiente e dose efetiva), assim como a blindagem do equipamento estão adequados de acordo com os limites da exposição ocupacional. Ressalta-se a importância de se seguir rigorosamente os princípios de radioproteção, já que se trata de pesquisas com fontes radioativas não seladas.
Resumo:
Borate glasses present an absorption coefficient very close to that of human tissue. This fact makes some borates ideal materials to develop medical and environmental dosimeters. Glass compositions with calcium tetraborate (CaB4O7) and calcium metaborate (CaB2O4), such as the xCaB(4)O(7) - (100-x)CaB2O4 System (0 <= x <= 100 wt%) were obtained by the traditional melting/quenching method. A phenomenon widely known as the 'boron anomaly' was observed in our thermal analysis measurements, as indicated by the increase of T, and the appearance of a maximum value in the composition with 40 wt% of CaB2O4. The Dy doped and Li co-doped 80CaB(4)O(7)-20CaB(2)O(4) (Wt%) glass samples were studied by the thermoluminescence technique. The addition of Dy improved the signal sensitivity in about three times with respect to the undoped glass sample. The addition of Li as a co-dopant in this glass caused a shift to a lower temperature of about 20 degrees C in the main glow peak. The structural analysis of the 80CaB(4)O(7)-20CaB(2)O(4) (wt%) undoped and doped samples were studied through infrared absorption. We have noted an increase in the coordination number of the boron atoms from 3 to 4, i.e., the conversion of the BO3 triangular structural units into BO4 tetrahedra. (c) 2006 Elsevier B.V. All rights reserved.