98 resultados para Symplectic orbifold


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we investigate the deformation theory of pairs of an irreducible symplectic manifold X together with a Lagrangian subvariety Y in X, where the focus is on singular Lagrangian subvarieties. Among other things, Voisin's results [Voi92] are generalized to the case of simple normal crossing subvarieties; partial results are also obtained for more complicated singularities.rnAs done in Voisin's article, we link the codimension of the subspace of the universal deformation space of X parametrizing those deformations where Y persists, to the rank of a certain map in cohomology. This enables us in some concrete cases to actually calculate or at least estimate the codimension of this particular subspace. In these cases the Lagrangian subvarieties in question occur as fibers or fiber components of a given Lagrangian fibration f : X --> B. We discuss examples and the question of how our results might help to understand some aspects of Lagrangian fibrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lo scopo del presente lavoro è di illustrare alcuni temi di geometria simplettica, i cui risultati possono essere applicati con successo al problema dell’integrazione dei sistemi dinamici. Nella prima parte si formalizza il teorema di Noether generalizzato, introducendo il concetto dell’applicazione momento, e si dà una descrizione dettagliata del processo di riduzione simplettica, che consiste nello sfruttare le simmetrie di un sistema fisico, ovvero l’invarianza sotto l’azione di un gruppo dato, al fine di eliminarne i gradi di libertà ridondanti. Nella seconda parte, in quanto risultato notevole reso possibile dalla teoria suesposta, si fornisce una panoramica dei sistemi di tipo Calogero-Moser: sistemi totalmente integrabili che possono essere introdotti e risolti usando la tecnica della riduzione simplettica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis we give a definition of the term logarithmically symplectic variety; to be precise, we distinguish even two types of such varieties. The general type is a triple $(f,nabla,omega)$ comprising a log smooth morphism $fcolon Xtomathrm{Spec}kappa$ of log schemes together with a flat log connection $nablacolon LtoOmega^1_fotimes L$ and a ($nabla$-closed) log symplectic form $omegainGamma(X,Omega^2_fotimes L)$. We define the functor of log Artin rings of log smooth deformations of such varieties $(f,nabla,omega)$ and calculate its obstruction theory, which turns out to be given by the vector spaces $H^i(X,B^bullet_{(f,nabla)}(omega))$, $i=0,1,2$. Here $B^bullet_{(f,nabla)}(omega)$ is the class of a certain complex of $mathcal{O}_X$-modules in the derived category $mathrm{D}(X/kappa)$ associated to the log symplectic form $omega$. The main results state that under certain conditions a log symplectic variety can, by a flat deformation, be smoothed to a symplectic variety in the usual sense. This may provide a new approach to the construction of new examples of irreducible symplectic manifolds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Capacity is an important numerical invariant of symplectic manifolds. This paper studies when a subset of a symplectic manifold is null, i.e., can be removed without affecting the ambient capacity. After examples of open null sets and codimension-2 non-null sets, geometric techniques are developed to perturb any isotopy of a loop to a hamiltonian flow; it follows that sets of dimension 0 and 1 are null. For isotropic sets of higher dimensions, obstructions to the perturbation are found in homotopy groups of the orthogonal groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantum mechanics associate to some symplectic manifolds M a quantum model Q(M), which is a Hilbert space. The space Q(M) is the quantum mechanical analogue of the classical phase space M. We discuss here relations between the volume of M and the dimension of the vector space Q(M). Analogues for convex polyhedra are considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Comparing the Poincaré plots of the Tokamap and the underlying Hamiltonian system reveals large differences. This stems from the particular choice of evaluation of the singular perturbations present in the system (a series of δ functions). A symmetric evaluation approach is proposed and shown to yield results that almost perfectly match the Hamiltonian system. © 2005 The American Physical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is proved that there exists a bijection between the primitive ideals of the algebra of regular functions on quantum m × n-matrices and the symplectic leaves of associated Poisson structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We define Picard cycles on each smooth three-sheeted Galois cover C of the Riemann sphere. The moduli space of all these algebraic curves is a nice Shimura surface, namely a symmetric quotient of the projective plane uniformized by the complex two-dimensional unit ball. We show that all Picard cycles on C form a simple orbit of the Picard modular group of Eisenstein numbers. The proof uses a special surface classification in connection with the uniformization of a classical Picard-Fuchs system. It yields an explicit symplectic representation of the braid groups (coloured or not) of four strings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary: 34B40; secondary: 35Q51, 35Q53

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We are able to give a complete description of four-dimensional Lie algebras g which satisfy the tame-compatible question of Donaldson for all almost complex structures J on g are completely described. As a consequence, examples are given of (non-unimodular) four-dimensional Lie algebras with almost complex structures which are tamed but not compatible with symplectic forms.? Note that Donaldson asked his question for compact four-manifolds. In that context, the problem is still open, but it is believed that any tamed almost complex structure is in fact compatible with a symplectic form. In this presentation, I will define the basic objects involved and will give some insights on the proof. The key for the proof is translating the problem into a Linear Algebra setting. This is a joint work with Dr. Draghici.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acknowledgements One of us (T. B.) acknowledges many interesting discussions on coupled maps with Professor C. Tsallis. We are also grateful to the anonymous referees for their constructive feedback that helped us improve the manuscript and to the HPCS Laboratory of the TEI of Western Greece for providing the computer facilities where all our simulations were performed. C. G. A. was partially supported by the “EPSRC EP/I032606/1” grant of the University of Aberdeen. This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) - Research Funding Program: THALES - Investing in knowledge society through the European Social Fund.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acknowledgements One of us (T. B.) acknowledges many interesting discussions on coupled maps with Professor C. Tsallis. We are also grateful to the anonymous referees for their constructive feedback that helped us improve the manuscript and to the HPCS Laboratory of the TEI of Western Greece for providing the computer facilities where all our simulations were performed. C. G. A. was partially supported by the “EPSRC EP/I032606/1” grant of the University of Aberdeen. This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) - Research Funding Program: THALES - Investing in knowledge society through the European Social Fund.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quotient of a finite-dimensional Euclidean space by a finite linear group inherits different structures from the initial space, e.g. a topology, a metric and a piecewise linear structure. The question when such a quotient is a manifold leads to the study of finite groups generated by reflections and rotations, i.e. by orthogonal transformations whose fixed point subspace has codimension one or two. We classify such groups and thereby complete earlier results by M. A. Mikhaîlova from the 70s and 80s. Moreover, we show that a finite group is generated by reflections and) rotations if and only if the corresponding quotient is a Lipschitz-, or equivalently, a piecewise linear manifold (with boundary). For the proof of this statement we show in addition that each piecewise linear manifold of dimension up to four on which a finite group acts by piecewise linear homeomorphisms admits a compatible smooth structure with respect to which the group acts smoothly. This solves a challenge by Thurston and confirms a conjecture by Kwasik and Lee. In the topological category a counterexample to the above mentioned characterization is given by the binary icosahedral group. We show that this is the only counterexample up to products. In particular, we answer the question by Davis of when the underlying space of an orbifold is a topological manifold. As a corollary of our results we generalize a fixed point theorem by Steinberg on unitary reflection groups to finite groups generated by reflections and rotations. As an application thereof we answer a question by Petrunin on quotients of spheres.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study automorphisms and the mapping class group of irreducible holomorphic symplectic (IHS) manifolds. We produce two examples of manifolds of K3[2] type with a symplectic action of the alternating group A7. Our examples are realized as double EPW-sextics, the large cardinality of the group allows us to prove the irrationality of the associated families of Gushel-Mukai threefolds. We describe the group of automorphisms of double EPW-cubes. We give an answer to the Nielsen realization problem for IHS manifolds in analogy to the case of K3 surfaces, determining when a finite group of mapping classes fixes an Einstein (or Kähler-Einstein) metric. We describe, for some deformation classes, the mapping class group and its representation in second cohomology. We classify non-symplectic involutions of manifolds of OG10 type determining the possible invariant and coinvariant lattices. We study non-symplectic involutions on LSV manifolds that are geometrically induced from non-symplectic involutions on cubic fourfolds.