985 resultados para Surface hydrophobicity


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Silicone hydrogel (SiH) contact lenses have been available for over a decade. During that time, these highly innovative materials and designs have continually improved and now represent a major percentage of fits within the global contact lens market.1 Their high oxygen transmissibility has drastically reduced the incidence of hypoxia-related conditions such as corneal edema, limbal hyperaemia, and corneal vascularisation.2,3 However, there remain significant challenges in the quest for the ideal contact lens. The silicone material used in SiH contact lenses is inherently more hydrophobic than the non-silicone hydrogel materials. SiH lens manufacturers must find ways to overcome lens surface hydrophobicity since it can create issues in terms of lens wettability and surface deposition. Achieving ideal lens water content presents yet another challenge since increasing water content in a silicone hydrogel lens can reduce oxygen transmissibility. This is because increasing water content results in decreased silicone content in the lens and silicone is a better transmitter of oxygen than water.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Staphylococcus saprophyticus is an important cause of urinary tract infection (UTI), particularly among young women, and is second only to uropathogenic Escherichia coli as the most frequent cause of UTI. The molecular mechanisms of urinary tract colonization by S. saprophyticus remain poorly understood. We have identified a novel 6.84 kb plasmid-located adhesin-encoding gene in S. saprophyticus strain MS1146 which we have termed uro-adherence factor B (uafB). UafB is a glycosylated serine-rich repeat protein that is expressed on the surface of S. saprophyticus MS1146. UafB also functions as a major cell surface hydrophobicity factor. To characterize the role of UafB we generated an isogenic uafB mutant in S. saprophyticus MS1146 by interruption with a group II intron. The uafB mutant had a significantly reduced ability to bind to fibronectin and fibrinogen. Furthermore, we show that a recombinant protein containing the putative binding domain of UafB binds specifically to fibronectin and fibrinogen. UafB was not involved in adhesion in a mouse model of UTI; however, we observed a striking UafB-mediated adhesion phenotype to human uroepithelial cells. We have also identified genes homologous to uafB in other staphylococci which, like uafB, appear to be located on transposable elements. Thus, our data indicate that UafB is a novel adhesin of S. saprophyticus that contributes to cell surface hydrophobicity, mediates adhesion to fibronectin and fibrinogen, and exhibits tropism for human uroepithelial cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE. To understand the molecular features underlying autosomal dominant congenital cataracts caused by the deletion mutations W156X in human gamma D-crystallin and W157X in human gamma C-crystallin. METHODS. Normal and mutant cDNAs (with the enhanced green fluorescent protein [EGFP] tag in the front) were cloned into the pEGFP-C1 vector, transfected into various cell lines, and observed under a confocal microscope for EGFP fluorescence. Normal and W156X gamma D cDNAs were also cloned into the pET21a(+) vector, and the recombinant proteins were overexpressed in the BL-21(DE3) pLysS strain of Escherichia coli, purified, and isolated. The conformational features, structural stability, and solubility in aqueous solution of the mutant protein were compared with those of the wild type using spectroscopic methods. Comparative molecular modeling was performed to provide additional structural information. RESULTS. Transfection of the EGFP-tagged mutant cDNAs into several cell lines led to the visualization of aggregates, whereas that of wild-type cDNAs did not. Turning to the properties of the expressed proteins, the mutant molecules show remarkable reduction in solubility. They also seem to have a greater degree of surface hydrophobicity than the wild-type molecules, most likely accounting for self-aggregation. Molecular modeling studies support these features. CONCLUSIONS. The deletion of C-terminal 18 residues of human gamma C-and gamma D-crystallins exposes the side chains of several hydrophobic residues in the sequence to the solvent, causing the molecule to self-aggregate. This feature appears to be reflected in situ on the introduction of the mutants in human lens epithelial cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The divergent role of microbes in the field of mineral processing starting from mining and beneficiation to efficient waste disposal has been well recognized now. The roles of various microorganisms and bioreagents in the beneficiation of minerals are illustrated in this paper. Various types of microorganisms useful in bringing about selective flotation and flocculation of various oxide and sulfide minerals are illustrated. Interfacial phenomena governing microbe-mineral interactions are discussed with reference to bacterial cell wall architecture, cell surface hydrophobicity, electrokinetic data, and adsorption behavior on various minerals. Applications of microbially induced mineral beneficiation are demonstrated with respect to beneficiation of iron ores, bauxite, limestone, and complex multimetal sulfides.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pseudomonas maltophilia CSV89, a soil bacterium, produces an extracellular biosurfactant, ''Biosur-Pm''. The partially purified product is nondialyzable and chemically composed of 50% protein and 12-15% sugar, which indicates the complex nature of Biosur-Pm. It reduces the surface tension of water from 73 to 53 x 10(-3) N m(-1) and has a critical micellar concentration of 80 mg/l. Compared to aliphatic hydrocarbons, Biosur-Pm shows good activity against aromatic hydrocarbons. The emulsion formed is stable and does not require any metal ions for emulsification. The kinetics of Biosur-Pm production suggest that its synthesis isa growth-associated and pH-dependent process. At pH 7.0, cells produced more Biosur-Pm with less cell surface hydrophobicity. At pH 8.0, however, the cells produced less Biosur-Pm with more cell surface hydrophobicity and showed a twofold higher affinity for aromatic hydrocarbons compared to the cells grown at pH 7.0. The Biosur-Pm showed a pH-dependent release, stimulated growth of the producer strain on mineral salts medium with 1-naphthoic acid when added externally, and facilitated the conversion of salicylate to catechol. All these results suggest that Biosur-Pm is probably a cell-wall component and helps in hydrocarbon assimilation/uptake.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Obtaining correctly folded proteins from inclusion bodies of recombinant proteins expressed in bacterial hosts requires solubilization with denaturants and a refolding step. Aggregation competes with the second step. Refolding of eight different proteins was carried out by precipitation with smart polymers. These proteins have different molecular weights, different number of disulfide bridges and some of these are known to be highly prone to aggregation. A high throughput refolding screen based upon fluorescence emission maximum around 340 nm (for correctly folded proteins) was developed to identify the suitable smart polymer. The proteins could be dissociated and recovered after the refolding step. The refolding could be scaled up and high refolding yields in the range of 8 mg L-1 (for CD4D12, the first two domains of human CD4) to 58 mg L-1 (for malETrx, thioredoxin fused with signal peptide of maltose binding protein) were obtained. Dynamic light scattering (DLS) showed that polymer if chosen correctly acted as a pseuclochaperonin and bound to the proteins. It also showed that the time for maximum binding was about 50 min which coincided with the time required for incubation (with the polymer) before precipitation for maximum recovery of folded proteins. The refolded proteins were characterized by fluorescence emission spectra, circular dichroism (CD) spectroscopy, melting temperature (T-m), and surface hydrophobicity measurement by ANS (8-anilinol-naphthalene sulfonic acid) fluorescence. Biological activity assay for thioredoxin and fluorescence based assay in case of maltose binding protein (MBP) were also carried out to confirm correct refolding. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A strategy called macro-(affinity ligand) facilitated three-phase partitioning (MLFTPP) is described for refolding of a diverse set of recombinant proteins starting from the solubilized inclusion bodies. It essentially consists of: (i) binding of the protein with a suitable smart polymer and (ii) precipitating the polymer-protein complex as an interfacial layer by mixing in a suitable amount of ammonium sulfate and t-butanol. Smart polymers are stimuli-responsive polymers that become insoluble on the application of a suitable stimulus (e.g., a change in the temperature, pH, or concentration of a chemical species such as Ca 2+ or K +). The MLFTPP process required approximately 10min, and the refolded proteins were found to be homogeneous on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The folded proteins were characterized by fluorescence emission spectroscopy, circular dichroism spectroscopy, biological activity, melting temperature, and surface hydrophobicity measurements by 8-anilino-1-naphthalenesulfonate fluorescence. Two refolded antibody fragments were also characterized by measuring K D by Biacore by using immobilized HIV-1 gp120. The data demonstrate that MLFTPP is a rapid and convenient procedure for refolding a variety of proteins from inclusion bodies at high concentration. Although establishing the generic nature of the approach would require wider trials by different groups, its success with the diverse kinds of proteins tried so far appears to be promising.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Microbially induced selective flocculation of hematite from kaolinite has been demonstrated using Bacillus subtilis. Growth of bacterial cells in the presence of kaolinite resulted in enhanced production of extracellular proteins while that of hematite promoted significant secretion of exopolysaccharides. Bacterial cells were adapted to grow in the presence of the minerals and use of hematite-grown and kaolinite-grown cells and their metabolic products in the selective flocculation of hematite and dispersion of kaolinite illustrated. Bacterial cells and extracellular polysaccharides exhibited higher surface affinity towards hematite, rendering it hydrophilic; while significant protein adsorption enhanced surface hydrophobicity of kaolinite. Bacterial interaction with hematite and kaolinite resulted in significant surface chemical changes on the minerals. Due to higher surface affinity towards extracellular proteins, zeta potentials of kaolinite shifted in the positive direction, while those of hematite shifted in the negative direction due to higher adsorption of extracellular polysaccharides. Bacterial interaction promoted selective flocculation of only hematite, while kaolinite was efficiently dispersed. Mineral-specific stress proteins were generated on growing B. subtilis in the presence of kaolinite. Interfacial aspects of microbe-mineral interactions are illustrated to explain microbially-induced selective flocculation of hematite from kaolinite with relevance to clay and iron ore beneficiation. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bacillus subtilis was used to demonstrate microbially induced selective flocculation to separate kaolinite and hematite. In neutral pH range of 7 - 8, 90 - 95% of hematite was selectively flocculated whereas 80 - 85% of kaolinite was dispersed using hematite - grown cells. Hematite-grown cells exhibited significant adsorption onto hematite than onto kaolinite, compared to unadapted cells. Kaolinite grown Bacillus subtilis secreted significant amounts of mineral specific proteins which conferred surface hydrophobicity whereas hematite-grown cells secreted more polysaccharides rendering hematite hydrophilic. Bacterial extracellular protein (EP) was isolated and the protein profiles of bacteria grown in the absence and presence of minerals were established.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A ocorrência de fenótipos multirresistentes de Corynebacterium pseudodiphtheriticum e sua associação a infecções graves, com elevada mortalidade em pacientes imunocomprometidos, aliados ao escasso conhecimento da virulência e patogenia destas infecções, motivou esta pesquisa, que teve como objetivo investigar mecanismos de virulência e resistência microbiana deste agente entre pacientes de um hospital universitário brasileiro. Um total de 113 amostras de C. pseudodiphtheriticum identificadas por métodos bioquímicos convencionais e sistema API-Coryne isoladas de pacientes de diferentes grupos etários. Os micro-organismos eram, em sua maioria, relacionados a infecções no trato respiratório (27,45%), urinário (29,20%) e sitios intravenosos (18,60%) e cerca de 32,70% das amostras foram provenientes de pacientes com pelo menos uma das condições predisponentes: insuficiência renal; transplante renal, tuberculose em paciente HIV+, câncer, cirrose hepática, hemodiálise e uso de cateter. As amostras testadas revelaram-se multirresistentes sendo a maioria resistente à oxacilina, eritromicina e clindamicina. A adesão das cepas ao poliestireno e ao poliuretano indicou o envolvimento de hidrofobicidade da superfície celular na fase inicial da formação de biofilmes. O crescimento subsequente conduziu à formação de microcolônias, agregados bacterianos densos incorporados na matriz exopolimérica rodeada por espaços vazios, típica de biofilmes maduros. Adicionalmente, a interação do micro-organismo com fibrinogênio e fibronectina humana indica o envolvimento destes componentes séricos na formação de biofilme, sugerindo a participação de diferentes adesinas neste processo e a capacidade deste agente formar biofilme in vivo. A afinidade por esses componentes e a formação de biofilme podem contribuir para o estabelecimento e disseminação da infecção no hospedeiro. Adicionalmente, as cepas de C. pseudodiphtheriticum isoladas de pacientes com infecções localizadas (ATCC10700/Pharyngitis) e sistêmicas (HHC1507/Bacteremia) exibiram um padrão de aderência agregativa-like a células HEp-2, caracterizado por aglomerados de bactérias com aparência de um "empilhado de tijolos". Através do teste FAS e ensaios de interação na presença de inibidores de citoesqueleto, demonstramos o envolvimento da polimerização de actina na internalização das cepas testadas. A internalização bacteriana e rearranjo do citoesqueleto pareceu ser parcialmente desencadeado pela ativação da tirosina-quinase. Finalmente, C. pseudodiphtheriticum foi capaz de sobreviver no ambiente intracelular e embora não tenha demonstrado capacidade de replicar intracelularmente, células HEp-2 foram incapazes de eliminar o patógeno completamente no ambiente extracelular no período de 24 horas. Todas as cepas estudadas foram capazes de induzir apoptose em células epiteliais 24 horas pós-infecção evidenciada pelo aumento significativo no número de células mortas e pela ocorrência de alterações nucleares reveladas através dos métodos de coloração pelo azul Trypan, pelo DAPI e microscopia electrônica de transmissão. Alterações morfológicas incluindo a vacuolização, a fragmentação nuclear e a formação de corpos apoptóticos foram observadas neste período. A citometria de fluxo demonstrou ainda uma diminuição significativa no tamanho das células infectadas e a utilização de dupla marcação (iodeto de propídio / anexina V) permitiu a detecção da ocorrência de necrose e apoptose tardia. Em conclusão, o conhecimento de tais características contribuiu para a compreensão de mecanismos envolvidos no aumento da frequência de infecções graves com elevada mortalidade em pacientes no ambiente hospitalar, por C. pseudodiphtheriticum, um patógeno rotineiramente subestimado em países em desenvolvimento.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Liquid phase oxidation of cyclohexane was carried out under mild reaction condition over copper pyrophosphate catalyst in CH3CN using hydrogen peroxide as an oxidant at the temperature between 25 and 80 degrees C. The copper pyrophosphate catalyst was characterized by means of XRD, FT-IR and water contact angle measurement. It was found that appropriate surface hydrophobicity is the key factor for the excellent performance of the catalyst. In addition, a significant improvement for the cyclohexane conversion in the presence of organic acid was observed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new application of rare earth pyrophosphates in vapor phase Beckmann rearrangement of cyclohexanone oxime was investigated. The rare earth phosphates were characterized by means of XRD, FT-IR, NH3-TPD and water contact angle measurement. It was found that the weak surface acidity and appropriate surface hydrophobicity should be two key factors in the excellent performance of these catalysts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The reported incidence of colonization of oropharyngeal medical devices with Candida spp. has increased in recent years, although few studies that have systematically examined the adherence of yeast cells to such biomaterials, the primary step in the process of colonization. This study, therefore, examined the effects of oropharyngeal atmospheric conditions (5% v/v carbon dioxide) and the presence of a salivary conditioning film on both the surface properties and adherence of Candida albicans, Candida krusei and Candida tropicalis to PVC and silicone. Furthermore, the effects of the salivary conditioning film on the surface properties of these biomaterials are reported. Growth of the three Candida spp. in an atmosphere containing 5% v/v CO2 significantly increased their cell surface hydrophobicity and reduced the zeta potential of C. albicans and C. krusei yet increased the zeta potential of C. tropicalis (p < 0.05). Furthermore, growth in 5% v/v CO2 decreased the adherence of C. tropicalis and C. albicans to both PVC and silicone, however, increased adherence of C. krusei (p < 0.05). Pre-treatment of the microorganisms with pooled human saliva significantly decreased their cell surface hydrophobicity and increased their adherence to either biomaterial in comparison to yeast cells that had been pre-treated with PBS (p < 0.05). Saliva treatment of the microorganisms had no consistent effect on microbial zeta potential. Interestingly, adherence of the three, saliva-treated Candida spp. to saliva-treated silicone and PVC was significantly lower than whenever the microorganisms and biomaterials had been treated with PBS (p < 0.05). Treatment of silicone and PVC with saliva significantly altered the surface properties, notably reducing both the advancing and receding contact angles and, additionally, the microrugosity. These effects may contribute to the decreased adherence of saliva-treated microorganisms to these biomaterials. In conclusion, this study has demonstrated the effects of physiological conditions within the oral cavity on the adherence of selected Candida spp. to biomaterials employed as oropharyngeal medical devices. In particular, this study has ominously shown that these materials act as substrates for yeast colonization, highlighting the need for advancements in biomaterial design. Furthermore, it is important that physiological conditions should be employed whenever biocompatibility of oropharyngeal biomaterials is under investigation. © 2001 Kluwer Academic Publishers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is accepted that ventilator-associated pneumonia is a frequent cause of morbidity and mortality in intensive care patients. This study describes the physicochemical properties of novel surfactant coatings of the endotracheal tube and the resistance to microbial adherence of surfactant coated endotracheal tube polyvinylchloride (PVC). Organic solutions of surfactants containing a range of ratios of cholesterol and lecithin (0:100, 25:75, 50:50, 75:25, dissolved in dichloromethane) were prepared and coated onto endotracheal tube PVC using a multiple dip-coating process. Using modulated temperature differential scanning calorimetry it was confirmed that the binary surfactant systems existed as physical mixtures. The surface properties of both surfactant-coated and uncoated PVC, following treatment with either pooled human saliva or phosphate-buffered saline (PBS), were characterised using dynamic contact angle analysis. Following treatment with saliva, the contact angles of PVC decreased; however, those of the coated biomaterials were unaffected, indicating different rates and extents of macromolecular adsorption from saliva onto the coated and uncoated PVC. The advancing and receding contact angles of the surfactant-coated PVC were unaffected by sonication, thereby providing evidence of the durability of the coatings. The cell surface hydrophobicity and zeta potentials of isolates of Staphylococcus aureus and Pseudomonas aeruginosa, following treatment with either saliva or PBS, and their adherence to uncoated and surfactant-coated PVC (that had been pre-treated with saliva) were examined. Adherence of S. aureus and Ps. aeruginosa to surfactant-coated PVC at each successive time period (0.5, 1, 2, 4, 8 h) was significantly lower than to uncoated PVC, the extent of the reduction frequently exceeding 90%. Interestingly, the microbial anti-adherent properties of the coatings were dependent on the lecithin content. Based on the impressive microbial anti-adherence properties and durability of the surfactant coating on PVC following dip coatings, it is proposed that these systems may usefully reduce the incidence of ventilator-associated pneumonia when employed as luminal coatings of the endotracheal tube.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Adherence of bacteria to biomaterials is the first stage in the development of a device-related infection. The adherence of bacterial cells to biomaterials may be influenced by surface characteristics of the cell, its growth conditions and the biomaterial surface chemistry. Following growth in human urine, the cell surface,hydrophobicity and zeta potential of two ureteral stent biofilm isolates, Enterococcus faecalis and Escherichia coli, were significantly altered. In addition, the adherence of human urine-grown Enterococcus faecalis and Escherichia coli to polyurethane was significantly increased by up to 52.1% and 58.6%, respectively. Treatment of the polyurethane with human urine rendered the polymer surface more hydrophilic (mean advancing water contact angle reduced from 97.59 degrees to 26.37 degrees). However, organisms grown in human urine showed less adherence (up to 90.4%) to the treated polymer than those grown in Mueller-Hinton broth. The results presented in this study indicate that in vivo conditions should be simulated as far as possible when carrying out in vitro bacterial adherence assays, especially if assessing novel methods for reduction of adherence. (C) 1997 Elsevier Science B.V.