1000 resultados para Surface hydrology


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The western Iberian margin has been one of the key locations to study abrupt glacial climate change and associated interhemispheric linkages. The regional variability in the response to those events is being studied by combining a multitude of published and new records. Looking at the trend from Marine Isotope Stage (MIS) 10 to 2, the planktic foraminifer data, conform with the alkenone record of Martrat et al. [2007], shows that abrupt climate change events, especially the Heinrich events, became more frequent and their impacts in general stronger during the last glacial cycle. However, there were two older periods with strong impacts on the Atlantic meridional overturning circulation (AMOC): the Heinrich-type event associated with Termination (T) IV and the one occurring during MIS 8 (269 to 265 ka). During the Heinrich stadials of the last glacial cycle, the polar front reached the northern Iberian margin (ca. 41°N), while the arctic front was located in the vicinity of 39°N. During all the glacial periods studied, there existed a boundary at the latter latitude, either the arctic front during extreme cold events or the subarctic front during less strong coolings or warmer glacials. Along with these fronts sea surface temperatures (SST) increased southward by about 1°C per one degree of latitude leading to steep temperature gradients in the eastern North Atlantic and pointing to a close vicinity between subpolar and subtropical waters. The southern Iberian margin was always bathed by subtropical water masses - surface and/ or subsurface ones -, but there were periods when these waters also penetrated northward to 40.6°N. Glacial hydrographic conditions were similar during MIS 2 and 4, but much different during MIS 6. MIS 6 was a warmer glacial with the polar front being located further to the north allowing the subtropical surface and subsurface waters to reach at minimum as far north as 40.6°N and resulting in relative stable conditions on the southern margin. In the vertical structure, the Greenland-type climate oscillations during the last glacial cycle were recorded down to 2465 m during the Heinrich stadials, i.e. slightly deeper than in the western basin. This deeper boundary is related to the admixing of Mediterranean Outflow Water, which also explains the better ventilation of the intermediate-depth water column on the Iberian margin. This compilation revealed that latitudinal, longitudinal and vertical gradients existed in the waters along the Iberian margin, i.e. in a relative restricted area, but sufficient paleo-data exists now to validate regional climate models for abrupt climate change events in the northeastern North Atlantic Ocean.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The modern eastern equatorial Pacific (EEP) is a major natural source for atmospheric carbon dioxide and is thought to be connected to high-latitude ocean dynamics by oceanic teleconnections on glacial-interglacial timescales. A wealth of sedimentary records aiming at reconstructing last Quaternary changes in primary productivity and nutrient utilization have been devoted to understanding those linkages between the EEP and other distant oceanic areas. Most of these records are, however, clustered in the pelagic EEP cold tongue, with comparatively little attention devoted to coastal areas. Here we present downcore measurements of the composition and concentration of the diatom assemblage together with opal (biogenic silica) concentration at site MD02-2529 recovered in the coastal Panama Basin. Piston core MD02-2529, collected in an area affected by a multitude of processes, provides evidence for strong variations in diatom production at the millennial timescale during the last glacial cycle. The maxima in total diatom concentration occurred during the early marine isotopic stage (MIS) 4 as well as during the MIS 4/3 transition and MIS 3. Rapid changes in diatom concentrations during the MIS 3 mimics Bond cycles as independently recorded by the SSS estimation derived from planktonic foraminifera from the same core. Such patterns indicate a clear linkage between diatom production in the coastal EEP and rapid climate changes in the high-latitude North Atlantic. In parallel, the long-term succession of the diatom community from coastal diatoms, predominantly thriving during MIS 5 and 4, towards pelagic diatoms, dominant during MIS 3 and 2, points to a long-term change in the surface hydrology. During Heinrich Events, diatoms strongly reduced their production, probably due to enhanced stratification in the upper water column. After the last glacial maximum, diatom production and valve preservation strongly decreased in response to the advection of nutrient (H2SiO4)-depleted, warmer water masses. Our high-resolution record highlights how regional climatic processes can modulate rapid changes in siliceous primary production as triggered by wind-induced local upwelling, indicating that millennial climatic variability can overtake other prominent hydrological processes such as those related to silicic acid leakage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Calcareous microfossils are widely used by paleoceanographers to investigate past sea-surface hydrology. Among these microfossils, planktonic foraminifera are probably the most extensively used tool (e.g. [1] for a review), as they are easy to extract from the sediment and can also be used for coupled geochemical (e.g; d18O, d13C, Mg/Ca) and paleo-ecological investigations. Planktonic foraminifera are marine protists, which build a calcareous shell made of several chambers which reflect in their chemistry the properties of the ambient water-masses. Planktonic foraminifera are known to thrive in various habitats, distributed not only along a latitudinal gradient, but also along different water-depth intervals within surface waters (0-1000 m). Regarding their biogeographical distribution, planktonic foraminifera assemblages therefore mirror different water-masses properties, such as temperature, salinity and nutrient content of the surface water in which they live. The investigation of the specific composition of a fossil assemblage (relative abundances) is therefore a way to empirically obtain (paleo)information on past variations of sea-surface hydrological parameters. This paper focuses on the planktonic foraminifera record from the Arctic domain. This polar region records peculiar sea-surface conditions, with the influence of nearly perennial sea-ice cover development. This has strong impact on living foraminifera populations and on the preservation of their shells in the underlying sediments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High-resolution records of coarse lithic content and oxygen isotope have been obtained in a piston core from the Irminger Basin. The last glacial period is characterized by numerous periods of increased iceberg discharges originating partly from Iceland and corresponding to millennial-scale instabilities of the coastal ice sheets and ice shelves in the Nordic area. A comparison with midlatitude sediment cores shows that ice-rafted material corresponding to the Heinrich events was deposited synchronously from 40° to 60°N. There are thus two oscillating systems: every 5-10 kyr massive iceberg armadas are released from large continental ice caps, whereas more frequent instabilities of the coastal ice sheets in the high latitude regions occur every 1.2-3.8 kyr. At the time of the Heinrich events the synchroneity of the response from all the northern hemisphere ice sheets attests the existence of strong interactions between the two systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The marine isotopic stage 3 (MIS3) at Ocean Drilling Program (ODP) Site 1060 (Gulf Stream) shows both sharp onset and end of interstadials, the existence of very short lived warm events during stadials, and points to differences in detail between the sea surface temperature (SST) record from the western North Atlantic and the atmospheric temperature record inferred from d18O in Greenland ice. Investigating MIS3 and obtaining comparable data from other locations appears crucial. The eastern Atlantic provides well-documented records of climate changes. We have selected a core from off Portugal and use it to examine Dansgaard/Oeschger events (D/O) at centennial-scale resolution (139 years on average between two data points). We have obtained a faunal data set for core MD01-2444, 37°N, 10°W, 2600 m water depth and use a group of species (Globigerina bulloides + Globigerinita glutinata) as a proxy of upwelling intensity driven by trade winds intensity changes. We tentatively relate the variation of this group to a North Atlantic Oscillation-like phenomenon (NAO) off Portugal. We observe that it resembles the rainfall index in the Caribbean as recorded at ODP Site 1002 (Cariaco Basin) which traces the Intertropical Convergence Zone (ITCZ) location through changes of terrigenous inputs. The driest intervals (ITZC to the south) at Site 1002 correspond to intervals of increased upwelling in MD01-2444 as well as the driest periods identified during stadials on similar cores in the area. Because the ITZC to the south is consistent with an El Niño-Southern Oscillation (ENSO+) situation, our study suggests a positive correlation between ENSO-like conditions and NAO-like conditions at a millennial timescale. During interstadial intervals when increased wetness over Cariaco is recorded (ITCZ to the north) and the upwelling in MD01-2444 is decreased, we see from both SSTs and faunal tropical indicators that MD01-2444 site is warm. In addition, interstadials are equally warm through each so-called Bond cycle. This contrasts with the Greenland Ice Core Project (GRIP) record where interstadial peaks are successively cooler through each Bond cycle. This record confirms a link between tropical climate linked to ITCZ position and the climate of southern Europe at millennial timescales, in spite of showing a very good correlation with polar latitudes (GRIP) through d18O on Globigerina bulloides. In addition, because the warmest SSTs and the d18O on G. bulloides are so remarkably different, our work points to changes in seasonality as a strong control over the climatic pattern of the North Atlantic area and the marked influence of winter conditions.